
MAVLINK MESSAGE

REFERENCE
ARDUPILOT IMPLEMENTATION GUIDE

GENERATED 2025 // MAVLINK HUD SYSTEMS

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 1 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

MAVLink Message Reference

SUPPORTED (BIDIRECTIONAL)

SYSTEM

TELEMETRY

SENSORS

CONTROL

MISSION

PAYLOAD

CAN-BUS

LOGGING

PARAMETERS

REMOTE-ID

SIMULATION

RECEIVE ONLY

SYSTEM

TELEMETRY

SENSORS

CONTROL

MISSION

PAYLOAD

LOGGING

TRANSMIT ONLY

TELEMETRY

SENSORS

CONTROL

PAYLOAD

LOGGING

SIMULATION

UNSUPPORTED
SYSTEM

TELEMETRY

SENSORS

CONTROL

MISSION

PAYLOAD

CAN-BUS

LOGGING

PARAMETERS

SIMULATION

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 2 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

SUPPORTED (BIDIRECTIONAL)

SYSTEM

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 3 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

TIMESYNC (ID 111) SUPPORTED (CRITICAL)

Summary

The TIMESYNC message is the primary mechanism for high-precision time synchronization between
ArduPilot and external MAVLink nodes (like a Ground Control Station or a Companion Computer). It allows
systems to calculate the network latency (Round Trip Time) and the clock offset between the devices,
ensuring that logs and events are perfectly aligned.

Status

Supported (Critical)

Directionality

TX (Transmit): All Vehicles (Requesting or Responding to sync)
RX (Receive): All Vehicles (Handling sync requests/responses)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_timesync in

libraries/GCS_MAVLink/GCS_Common.cpp:3617.

Protocol Logic

The message uses two fields, tc1 and ts1 , to implement a "Ping-Pong" sync:

1. Request (tc1 == 0): An external system sends a packet with its current time in ts1 . ArduPilot
immediately responds by sending a packet back where ts1 is the same, but tc1 is ArduPilot's
current system time (in nanoseconds).

2. Response (tc1 != 0): If ArduPilot receives a packet where tc1 is non-zero, it recognizes it as a
response to a request it previously sent. It calculates the Round Trip Time (RTT) and logs the sync
event.

Implementation Detail

ArduPilot acts as the "Time Master" in most setups. It does not adjust its internal clock based on TIMESYNC
from a GCS; instead, it provides the reference time for the GCS to adjust its own offsets.

Data Fields

tc1 : Time sync timestamp 1 (nanoseconds).
ts1 : Time sync timestamp 2 (nanoseconds).

Practical Use Cases

1. Companion Computer Log Alignment:

Scenario: A Jetson Nano is recording video while the drone is flying.
Action: The Jetson Nano uses TIMESYNC to determine exactly how many milliseconds its
system clock is ahead or behind the flight controller. It then uses this offset to stamp the
video frames with the vehicle's time_boot_ms .

2. Precision Camera Triggering:

Scenario: A surveyor is using a mapping camera that triggers via a MAVLink signal.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 4 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3617
https://mavlinkhud.com/field-manual/mavlink-interface/ping.html
https://mavlinkhud.com/field-manual/mavlink-interface/system-time.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html

Action: By using TIMESYNC , the camera knows exactly when the "Trigger" message was sent
by the autopilot, allowing it to record a capture timestamp that accounts for link latency.

3. Link Quality Debugging:
Scenario: A pilot is experiencing "laggy" controls over a long-range radio.
Action: A developer monitors the RTT calculated from TIMESYNC . If the RTT spikes from
100ms to 500ms, it indicates a bottleneck or interference on the telemetry link.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3617: Primary sync handler.
libraries/GCS_MAVLink/GCS_Common.cpp:3677: Transmission function (send_timesync).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 5 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3617
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3677

POWER_STATUS (ID 125) SUPPORTED

Summary

The POWER_STATUS message provides real-time diagnostics for the flight controller's internal power rails. It
reports the board's supply voltage (Vcc), the servo rail voltage, and a series of health flags that indicate
whether power sources (like a USB cable or a Power Brick) are connected and valid. This message is
critical for identifying brownout risks and verifying power redundancy in professional flight systems.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports internal power health)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is in GCS_MAVLINK::send_power_status within

libraries/GCS_MAVLink/GCS_Common.cpp:216.

Data Sourcing

Voltages: Sourced from the Hardware Abstraction Layer (hal.analogin).
vcc : The 5V logic rail voltage in millivolts. Typically ~5000mV.
vservo : The voltage on the servo output rail in millivolts. Used to monitor the health of the
BEC or battery powering the servos.

Flags: A bitmask (MAV_POWER_STATUS) updated in libraries/AP_HAL_ChibiOS/AnalogIn.cpp:792.
MAV_POWER_STATUS_BRICK_VALID : Indicates a healthy power supply from the primary battery
brick.
MAV_POWER_STATUS_USB_CONNECTED : Indicates a USB cable is powering the board.
MAV_POWER_STATUS_CHANGED : Set if the power configuration changed during flight (e.g., a
battery was lost).

Data Fields

Vcc : 5V rail voltage in millivolts.
Vservo : Servo rail voltage in millivolts.
flags : Power status flags (MAV_POWER_STATUS).

Practical Use Cases

1. Brownout Prevention:

Scenario: A pilot is using high-torque servos that pull a lot of current from the 5V rail.
Action: The GCS monitors the vcc field. If the voltage drops below 4.5V during aggressive
maneuvers, the GCS triggers a loud "Low Vcc Warning" to warn the pilot of an imminent
crash.

2. Redundancy Verification:

Scenario: A high-end drone has dual power bricks for reliability.
Action: Before takeoff, the pilot checks the flags field in the "Status" tab to ensure both
MAV_POWER_STATUS_BRICK_VALID and a secondary source bit are set.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 6 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L216
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_HAL_ChibiOS/AnalogIn.cpp#L792

3. USB Debugging:

Scenario: A user is trying to configure a drone but can't get the motors to spin.
Action: The GCS shows USB_CONNECTED is active. Since ArduPilot generally prohibits motor
arming while on USB for safety, the pilot knows they must disconnect the cable and use
telemetry to test the motors.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:216: Primary message constructor.
libraries/AP_HAL_ChibiOS/AnalogIn.cpp:792: Hardware-level power flag logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 7 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L216
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_HAL_ChibiOS/AnalogIn.cpp#L792

SERIAL_CONTROL (ID 126) SUPPORTED

Summary

The SERIAL_CONTROL message allows a Ground Control Station (GCS) or companion computer to perform
low-level read/write operations on the vehicle's serial ports. It serves as a "tunnel," allowing remote
configuration of devices (like GPS modules or radios) attached to the autopilot without physical access.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Response data)
RX (Receive): All Vehicles (Write data / Request read)

Mechanics

The implementation is in GCS_MAVLINK::handle_serial_control in

libraries/GCS_MAVLink/GCS_serial_control.cpp:33.

Operations

1. Port Selection: The device field targets a specific port (e.g., SERIAL_CONTROL_DEV_GPS1).
2. Locking: Setting SERIAL_CONTROL_FLAG_EXCLUSIVE locks the port, preventing the normal driver (like
AP_GPS) from reading/writing. This allows the GCS to take full control.

3. Writing: Data in the data field is written to the UART.
4. Reading: If SERIAL_CONTROL_FLAG_RESPOND is set, the autopilot waits up to timeout milliseconds
for data to become available on the UART, then sends it back in a SERIAL_CONTROL reply (with
SERIAL_CONTROL_FLAG_REPLY set).

Data Fields

device : Serial control device type (SERIAL_CONTROL_DEV enum). 0=Telem1, 2=GPS1, 10=Shell,
100+=Serial0...9.
flags : Bitmap of flags (SERIAL_CONTROL_FLAG enum).

1: Reply (set by vehicle).
2: Respond (request response).
4: Exclusive (lock port).
8: Blocking (wait for buffer space).
16: Multi (allow multiple response packets).

timeout : Timeout for reply data in milliseconds.
baudrate : Baudrate of transfer. 0 to keep current.
count : How many bytes of data are valid.
data : Data payload (up to 70 bytes).

Practical Use Cases

1. u-blox Pass-Through:

Scenario: A user wants to debug a GPS configuration using u-center.
Action: Mission Planner sends SERIAL_CONTROL messages to lock the GPS port and tunnel
traffic between u-center (on PC) and the GPS module (on drone) via the MAVLink telemetry

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 8 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/tunnel.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_serial_control.cpp#L33
https://mavlinkhud.com/field-manual/mavlink-interface/debug.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

link.
2. Remote Shell:

Scenario: A developer needs to run NSH commands on Pixhawk.
Action: Sending device=SERIAL_CONTROL_DEV_SHELL routes data to the NuttX Shell (NSH),
allowing a remote terminal session.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_serial_control.cpp:33: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 9 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_serial_control.cpp#L33

AUTOPILOT_VERSION (ID 148) SUPPORTED (CRITICAL)

Summary

The AUTOPILOT_VERSION message is a critical diagnostic packet that defines the vehicle's identity and
capabilities. It reports the firmware version (e.g., ArduCopter 4.5.1), the specific Git SHA hash of the build,
and a bitmask of supported MAVLink features (e.g., whether the drone supports FTP, Mission Commands,
or Geofencing). Ground Control Stations use this message during the initial connection handshake to tailor
the user interface to the vehicle's specific features.

Status

Supported (Critical)

Directionality

TX (Transmit): All Vehicles (Identity and Capability report)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_autopilot_version within

libraries/GCS_MAVLink/GCS_Common.cpp:2912.

Data Sourcing

Version Info: Sourced from the AP_FWVersion library.
flight_sw_version : A packed integer representing Major, Minor, and Patch versions.
middleware_sw_version : Often contains the version of the underlying HAL (e.g., ChibiOS).
flight_custom_version : Stores the 8-byte Git SHA hash of the ArduPilot source tree.

Capabilities: A 64-bit bitmask calculated in GCS_MAVLink::capabilities()
(GCS_Common.cpp:6980).

Flags include MAV_PROTOCOL_CAPABILITY_MISSION_INT ,
MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT , and MAV_PROTOCOL_CAPABILITY_COMMAND_INT .

Trigger Logic

ArduPilot typically sends this message:

1. On Request: In response to MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES .
2. Handshake: Automatically as part of the initial connection sequence with most modern Ground
Control Stations.

Data Fields

capabilities : Bitmap of capabilities.
flight_sw_version : Firmware version number.
middleware_sw_version : Middleware version number.
os_sw_version : Operating system version number.
board_version : HW / board version (last 8 bytes should be silicon ID, if any).
flight_custom_version : Custom version field, commonly the first 8 bytes of the git hash.
middleware_custom_version : Custom version field, commonly the first 8 bytes of the git hash.
os_custom_version : Custom version field, commonly the first 8 bytes of the git hash.
vendor_id : ID of the board vendor.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 10 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2912
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6980

product_id : ID of the product.
uid : UID if provided by hardware.
uid2 : UID if provided by hardware.

Practical Use Cases

1. UI Customization:

Scenario: A pilot connects a "Blimp" to Mission Planner.
Action: Mission Planner reads AUTOPILOT_VERSION , identifies the vehicle as a Blimp, and
hides Copter-specific widgets (like "Motor Test") while showing Blimp-specific controls.

2. Firmware Integrity Verification:
Scenario: An industrial operator needs to ensure all drones in a fleet are running an identical,
certified firmware build.
Action: A script queries AUTOPILOT_VERSION and compares the flight_custom_version
(Git SHA) against the certified hash. If they don't match, the drone is grounded.

3. Feature Discovery:
Scenario: A developer is adding support for "MAVLink FTP" to a custom companion
computer.
Action: The computer checks the capabilities bitmask. If MAV_PROTOCOL_CAPABILITY_FTP
is not set, the computer falls back to standard parameter requests.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2912: Implementation of the version report.
libraries/GCS_MAVLink/GCS_Common.cpp:6980: Capability bitmask calculation logic.
libraries/AP_Common/AP_FWVersion.h: Internal structure for version tracking.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 11 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-ftp.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2912
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6980
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Common/AP_FWVersion.h

MEMINFO (ID 152) SUPPORTED

Summary

The MEMINFO message provides diagnostics regarding the flight controller's internal memory usage. It
reports the amount of free heap memory available to the system, which is critical for ensuring the stability
of long-running tasks, Lua scripts, and communication buffers.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports memory health)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is in GCS_MAVLINK::send_meminfo within

libraries/GCS_MAVLink/GCS_Common.cpp:208.

Data Sourcing

Available Memory: Sourced via hal.util->available_memory() . This returns the number of bytes
currently free in the system heap.
Fields:

brkval : Historically used for the heap break value. In modern ChibiOS-based ArduPilot, this
is typically set to 0.
freemem : The primary field, reporting free memory in bytes. Note: The standard MAVLink
message uses a 16-bit field for freemem , but ArduPilot uses an extension field (freemem32)
to support modern MCUs with more than 64KB of RAM.

Data Fields

brkval : Heap top.
freemem : Free memory (16-bit field, legacy).
freemem32 : Free memory (32-bit field, preferred).

Practical Use Cases

1. Lua Script Debugging:
Scenario: A developer is writing a complex Lua script to perform autonomous package
delivery.
Action: The developer monitors the freemem field in the GCS. If the free memory steadily
decreases over time, it indicates a "memory leak" in the script (e.g., global variables being
created inside a loop).

2. State-of-Health Monitoring:

Scenario: An industrial drone is performing a 2-hour autonomous inspection.
Action: The GCS logs the MEMINFO message. If free memory drops below a safety threshold
(e.g., 10\% of total RAM), the GCS triggers a "Low Memory Warning," advising the operator to
land and reboot.

3. Firmware Stress Testing:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 12 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L208
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html

Scenario: Developers are testing a new feature that uses large internal buffers (e.g., Terrain
following or advanced ADSB).
Action: By checking MEMINFO during flight, they can verify that the system has enough
headroom to handle peak processing loads without crashing.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:208: Implementation of the memory report.
libraries/AP_HAL/Util.h: Defines the available_memory() interface.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 13 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/object-avoidance/adsb-collision-avoidance.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L208
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_HAL/Util.h

HWSTATUS (ID 165) SUPPORTED

Summary

The HWSTATUS message reports basic hardware health metrics, specifically the board input voltage and
I2C error counts.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports hardware status)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by GCS_MAVLINK::send_hwstatus within
libraries/GCS_MAVLink/GCS_Common.cpp:5722.

Data Source

Vcc : Retrieved from hal.analogin->board_voltage() .
I2Cerr : Hardcoded to 0 in modern ArduPilot versions (I2C errors are now typically tracked per-bus
in other diagnostic messages).

Data Fields

Vcc : Board voltage (mV).
I2Cerr : I2C error count (legacy field, often 0).

Practical Use Cases

1. Brownout Detection:

Scenario: A user suspects their flight controller is rebooting in flight.
Action: Reviewing the HWSTATUS.Vcc log shows dips below 4.5V, indicating an inadequate
power supply or BEC brownout.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5722: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 14 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5722
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5722

MESSAGE_INTERVAL (ID 244) SUPPORTED

Summary

The MESSAGE_INTERVAL message provides information about the current frequency (interval) of a specific
MAVLink message on a telemetry link. In ArduPilot, this message is used to respond to Ground Control
Station queries about stream rates, allowing the GCS to verify that the vehicle is sending data at the
requested speed.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports current message interval)
RX (Receive): None (Use MAV_CMD_SET_MESSAGE_INTERVAL to change rates)

Transmission (TX)

ArduPilot sends MESSAGE_INTERVAL primarily in response to the MAV_CMD_GET_MESSAGE_INTERVAL

command. The logic is implemented in GCS_MAVLINK::handle_command_get_message_interval within
libraries/GCS_MAVLink/GCS_Common.cpp:3241.

Response Logic

Active Message: If the requested message ID is being streamed, ArduPilot sends the interval in
microseconds.
Disabled Message: If the message is currently disabled, it sends -1 .
Unsupported Message: If the message ID is unknown to the firmware, it sends 0 .

Reception (RX)

ArduPilot does not handle the MESSAGE_INTERVAL message if received from an external system. To change
a message rate, a GCS must use the command protocol:

MAV_CMD_SET_MESSAGE_INTERVAL (511): Used to request a specific message ID at a specific interval.
Handled in GCS_MAVLINK::set_message_interval (GCS_Common.cpp:3126).

Data Fields

message_id : The ID of the message for which this interval is being reported.
interval_us : The interval between two messages, in microseconds. A value of -1 indicates this
message is disabled, 0 indicates the message is not supported, > 0 indicates the interval in
microseconds.

Practical Use Cases

1. Dynamic HUD Refresh Rates:

Scenario: A GCS wants to show high-speed orientation data () during takeoff but

reduce it to during cruise to save battery and bandwidth.

Action: The GCS sends MAV_CMD_SET_MESSAGE_INTERVAL for ATTITUDE (30). It then sends
MAV_CMD_GET_MESSAGE_INTERVAL to verify ArduPilot has successfully applied the

50Hz
10Hz

20000μs

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 15 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3241
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3126
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html

(50Hz) interval.
2. Telemetry Bandwidth Management:

Scenario: A pilot is using a low-speed satellite link.
Action: The GCS queries the intervals of all active streams. It can then identify high-
bandwidth messages that aren't strictly necessary and disable them to prioritize critical
telemetry.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3241: Logic for responding with the current interval.
libraries/GCS_MAVLink/GCS_Common.cpp:3126: Logic for setting a new interval.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 16 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3241
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3126

NAMED_VALUE_FLOAT (ID 251) SUPPORTED (RX & TX)

Summary

Key-value pair of a string name and a float value. Used extensively for debugging and Lua scripting
integration.

Status

Supported (RX & TX)

Directionality

TX (Transmit): All Vehicles - Sends debug/script data.
RX (Receive): All Vehicles - Receives debug/script data.

Transmission (TX)

Lua scripts often use gcs:send_named_float('my_var', value) to output debug data to the GCS graph.

Source: libraries/GCS_MAVLink/GCS.cpp

Reception (RX)

Handled by GCS_MAVLink::handle_named_value . Useful for injecting data into scripts or logging external
events.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Data Fields

time_boot_ms : Timestamp.
name : Name string (10 chars max).
value : Float value.

Practical Use Cases

1. Lua Script Debugging:

Scenario: Developing a complex Lua script for thermal soaring.
Action: The script sends gcs:send_named_float('vario', climb_rate) to visualize the
internal climb rate filter on the GCS tuning graph.

Key Codebase Locations

libraries/GCS_MAVLink/GCS.cpp:122: Sending.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 17 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/debug.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS.cpp#L122
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4459
https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html

STATUSTEXT (ID 253) SUPPORTED (RX & TX)

Summary

Text message status report. This is the primary way ArduPilot communicates errors, warnings, and info
messages to the user.

Status

Supported (RX & TX)

Directionality

TX (Transmit): All Vehicles - Sends status messages.
RX (Receive): All Vehicles - Receives status messages (e.g., from companion computer).

Transmission (TX)

ArduPilot sends this message whenever gcs().send_text() is called. This covers everything from
"Armed" messages to "EKF Variance" errors.

Reception (RX)

Handled by GCS_MAVLink::handle_statustext .

Logging: Logs the text to the Dataflash log.
Forwarding: Forwards the message to other active MAVLink channels (e.g., forwarding a message
from a companion computer to the GCS).

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Data Fields

severity : Severity level (MAV_SEVERITY_EMERGENCY to MAV_SEVERITY_DEBUG).
text : Text string (50 chars max).

Practical Use Cases

1. Failsafe Notification:

Scenario: Battery low.
Action: ArduPilot sends STATUSTEXT (Severity: CRITICAL) "Battery Low!". The GCS speaks
this alert to the pilot.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4328: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 18 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-variance-innovations.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4328
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

DEVICE_OP_READ (ID 11000) SUPPORTED

Summary

The DEVICE_OP_READ message provides a mechanism for low-level debugging of I2C and SPI devices
connected to the Autopilot. It allows a developer to read raw registers from sensors or peripherals directly
via MAVLink, bypassing the standard driver abstractions.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Executes the read operation)

Usage

This message is typically sent by a developer tool (like MAVProxy) to diagnose hardware issues (e.g., "Is
the compass responding on I2C bus 0 at address 0x1E?").

Core Logic

The handler is implemented in GCS_MAVLINK::handle_device_op_read within

libraries/GCS_MAVLink/GCS_DeviceOp.cpp:34.

1. Device Lookup: It resolves the device using hal.i2c_mgr->get_device() or hal.spi-
>get_device() based on the bustype .

2. Semaphore: It attempts to take the bus semaphore to ensure atomic access.
3. Read: It performs the read operation (read_bank_registers or transfer_bank).
4. Reply: It sends a DEVICE_OP_READ_REPLY (11001) with the data or an error code.

Data Fields

target_system / target_component : Targeted component.
request_id : ID to match request with reply.
bustype : DEVICE_OP_BUSTYPE_I2C (0) or DEVICE_OP_BUSTYPE_SPI (1).
bus : I2C Bus ID.
address : I2C Device Address.
busname : SPI Bus Name (string).
regstart : First register to read.
count : Number of bytes to read.
bank : Bank number (for devices with banked registers).

Practical Use Cases

1. Sensor Debugging:

Scenario: A new Compass sensor is not being detected.
Action: The developer sends DEVICE_OP_READ to the sensor's "WHO_AM_I" register (e.g.,
0x75). If the reply contains the correct ID, the hardware is working, and the issue is likely in
the driver initialization.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 19 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_DeviceOp.cpp#L34
https://mavlinkhud.com/field-manual/mavlink-interface/device-op-read-reply.html

Key Codebase Locations

libraries/GCS_MAVLink/GCS_DeviceOp.cpp:34: Implementation of the handler.

DEVICE_OP_READ_REPLY (ID 11001) SUPPORTED

Summary

The DEVICE_OP_READ_REPLY message is the response to a DEVICE_OP_READ (11000) command. It returns
the requested register data from an I2C or SPI device, along with a result code indicating success or failure.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports read results to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the GCS_MAVLINK library immediately after attempting the requested device
read operation.

Core Logic

The implementation is in GCS_MAVLINK::handle_device_op_read within
libraries/GCS_MAVLink/GCS_DeviceOp.cpp:77.

It populates the data buffer with the bytes read from the device.

Data Fields

request_id : ID matching the request.
result : 0=Success, 1=Unknown bus, 2=Unknown device, 3=Semaphore error, 4=Read error,

5=Buffer overflow.
regstart : The starting register that was read.
count : Number of bytes read.
data : Raw data buffer (up to 128 bytes).
bank : Bank number.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 20 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_DeviceOp.cpp#L34
https://mavlinkhud.com/field-manual/mavlink-interface/device-op-read.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_DeviceOp.cpp#L77

DEVICE_OP_WRITE (ID 11002) SUPPORTED

Summary

The DEVICE_OP_WRITE message provides a mechanism for low-level debugging of I2C and SPI devices. It
allows a developer to write raw values to registers on sensors or peripherals directly via MAVLink.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Executes the write operation)

Usage

WARNING: Using this message allows direct hardware manipulation. Writing incorrect values to sensor
registers can crash drivers, disable sensors, or cause physical damage. Use with extreme caution.

Core Logic

The handler is implemented in GCS_MAVLINK::handle_device_op_write within

libraries/GCS_MAVLink/GCS_DeviceOp.cpp:101.

1. Device Lookup: Resolves the device via I2C bus/address or SPI name.
2. Write: Performs write_bank_register or transfer_bank (if regstart == 0xff).
3. Reply: Sends DEVICE_OP_WRITE_REPLY (11003) with the result code.

Data Fields

target_system / target_component : Targeted component.
request_id : ID to match request with reply.
bustype : DEVICE_OP_BUSTYPE_I2C (0) or DEVICE_OP_BUSTYPE_SPI (1).
bus : I2C Bus ID.
address : I2C Device Address.
busname : SPI Bus Name (string).
regstart : First register to write. Set to 0xFF for raw transfer.
count : Number of bytes to write.
data : Raw data buffer (up to 128 bytes).
bank : Bank number.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 21 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_DeviceOp.cpp#L101
https://mavlinkhud.com/field-manual/mavlink-interface/device-op-write-reply.html

DEVICE_OP_WRITE_REPLY (ID 11003) SUPPORTED

Summary

The DEVICE_OP_WRITE_REPLY message is the response to a DEVICE_OP_WRITE (11002) command. It
indicates whether the low-level register write operation was successful.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports write status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the GCS_MAVLINK library immediately after attempting the requested device
write operation.

Core Logic

The implementation is in GCS_MAVLINK::handle_device_op_write within

libraries/GCS_MAVLink/GCS_DeviceOp.cpp:140.

Data Fields

request_id : ID matching the request.
result : 0=Success, 1=Unknown bus, 2=Unknown device, 3=Semaphore error, 4=Write error.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 22 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/device-op-write.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_DeviceOp.cpp#L140

SECURE_COMMAND (ID 11004) SUPPORTED

Summary

The SECURE_COMMAND message allows a Ground Control Station (GCS) to perform sensitive, privileged
operations on the Autopilot or connected peripherals. These operations, such as updating bootloader keys
or configuring Remote ID, are protected by a digital signature to prevent unauthorized access.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Executes the secure command)

Usage

The command payload must be signed using a private key corresponding to a public key already known to
the Autopilot. The signature covers the sequence number, operation, data, and a session key (retrieved via
SECURE_COMMAND_GET_SESSION_KEY).

Core Logic

The handler is implemented in AP_CheckFirmware::handle_secure_command within
libraries/AP_CheckFirmware/AP_CheckFirmware_secure_command.cpp:270.

1. Verification: It calls check_signature() to verify the command payload against the stored public
keys.

2. Execution: If valid, it performs the requested operation (e.g., updating the bootloader's key table).
3. Reply: It sends a SECURE_COMMAND_REPLY (11005) with the result.

Operations (SECURE_COMMAND_OP)

GET_SESSION_KEY : Retrieve a temporary session key.
GET_REMOTEID_SESSION_KEY : Retrieve session key for Remote ID module.
REMOVE_PUBLIC_KEYS : Clear public keys.
GET_PUBLIC_KEYS : Read stored public keys.
SET_PUBLIC_KEYS : Write new public keys.
GET_REMOTEID_CONFIG : Read Remote ID config.
SET_REMOTEID_CONFIG : Write Remote ID config.
FLASH_BOOTLOADER : Update the bootloader.

Data Fields

target_system / target_component : Targeted component.
sequence : Sequence number to prevent replay attacks.
operation : Operation ID (SECURE_COMMAND_OP).
data_length : Length of data payload.
sig_length : Length of signature.
data : Payload followed by Signature (max 220 bytes total).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 23 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_CheckFirmware/AP_CheckFirmware_secure_command.cpp#L270
https://mavlinkhud.com/field-manual/mavlink-interface/secure-command-reply.html

SECURE_COMMAND_REPLY (ID 11005) SUPPORTED

Summary

The SECURE_COMMAND_REPLY message is the response to a SECURE_COMMAND (11004). It indicates the
success or failure of the requested secure operation and returns any requested data (e.g., session keys,
public keys).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports result to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_CheckFirmware library immediately after processing the secure
command.

Core Logic

The implementation is in AP_CheckFirmware::handle_secure_command within

libraries/AP_CheckFirmware/AP_CheckFirmware_secure_command.cpp:386.

Data Fields

sequence : Sequence number from the request.
operation : Operation ID from the request.
result : Result code (MAV_RESULT).

ACCEPTED : Success.
DENIED : Signature verification failed.
UNSUPPORTED : Unknown operation.
FAILED : Internal error (e.g., flash write failed).

data_length : Length of return data.
data : Return data (up to 220 bytes), such as the Session Key.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 24 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/secure-command.html
https://mavlinkhud.com/field-manual/mavlink-interface/secure-command.html
https://mavlinkhud.com/field-manual/mavlink-interface/secure-command.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_CheckFirmware/AP_CheckFirmware_secure_command.cpp#L386

OSD_PARAM_CONFIG (ID 11033) SUPPORTED

Summary

The OSD_PARAM_CONFIG message allows a Ground Control Station (GCS) to configure the "Parameter
Tuning Screens" of the onboard OSD. This feature enables pilots to tune specific parameters (like PIDs or
Rates) using the RC transmitter sticks and the OSD menu, without needing a GCS connected.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Configures OSD screens)

Usage

The GCS sends this message to define which parameters appear on which OSD screen and in what order.

Core Logic

The handler is implemented in AP_OSD::handle_write_msg (which delegates to AP_OSD_ParamScreen)
within libraries/AP_OSD/AP_OSD.cpp:654.

It writes the configuration to the OSD_ParamScreen backend.

Data Fields

target_system / target_component : Targeted component.
request_id : ID to match request with reply.
osd_screen : OSD Screen index (1-based).
osd_screen_param_index : Index within the screen (0-based).
param_id : Parameter name (string).
config_type : OSD_PARAM_CONFIG_TYPE (e.g., Min, Max, Step, Value).
min_value : Minimum value for tuning.
max_value : Maximum value for tuning.
increment : Step size for tuning.

Practical Use Cases

1. Field Tuning:

Scenario: A pilot is tuning a new racing drone at the field.
Action: They use the GCS to map ATC_RAT_RLL_P , ATC_RAT_RLL_I , and ATC_RAT_RLL_D to
OSD Screen 1 using OSD_PARAM_CONFIG . Now, they can land, adjust PIDs using their goggles
and sticks, and take off again instantly.

2. Mission Configuration:

Scenario: A survey drone needs adjustable overlap.
Action: The integrator maps the custom script parameter SURVEY_OVERLAP to the OSD menu,
allowing the operator to change the mission parameter without a laptop.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 25 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OSD/AP_OSD.cpp#L654
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

OSD_PARAM_CONFIG_REPLY (ID 11034) SUPPORTED

Summary

The OSD_PARAM_CONFIG_REPLY message is the response to an OSD_PARAM_CONFIG (11033) command. It
indicates whether the requested OSD parameter configuration was accepted or rejected.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports config result to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_OSD library immediately after processing the configuration command.

Core Logic

The implementation is in AP_OSD_ParamScreen::handle_write_msg within

libraries/AP_OSD/AP_OSD_ParamScreen.cpp:597.

Data Fields

request_id : ID matching the request.
result : OSD_PARAM_CONFIG_ERROR enum (Success, Invalid Screen, Invalid Parameter, etc.).

Practical Use Cases

1. Validation:

Scenario: A user tries to map a non-existent parameter "FOO_BAR" to the OSD.
Action: The Autopilot replies with OSD_PARAM_CONFIG_REPLY containing
OSD_PARAM_INVALID_PARAMETER . The GCS displays an error message to the user: "Parameter
not found."

2. Sync Confirmation:

Scenario: A GCS is restoring a saved OSD layout.
Action: It sends 10 config messages in rapid succession. It waits for 10
OSD_PARAM_CONFIG_REPLY messages with SUCCESS to confirm the layout has been fully
applied to the flight controller.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 26 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/osd-param-config.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OSD/AP_OSD_ParamScreen.cpp#L597
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html

OSD_PARAM_SHOW_CONFIG (ID 11035) SUPPORTED

Summary

The OSD_PARAM_SHOW_CONFIG message allows a Ground Control Station (GCS) to query the current
configuration of the OSD Parameter Tuning screens. This allows the GCS to display or edit the current
layout of the OSD menu.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Processes the query)

Usage

The GCS requests information about a specific entry in the OSD parameter list.

Core Logic

The handler is implemented in AP_OSD_ParamScreen::handle_read_msg within

libraries/AP_OSD/AP_OSD_ParamScreen.cpp:606.

It looks up the parameter configured at the requested index and replies with its name, limits, and type.

Data Fields

target_system / target_component : Targeted component.
request_id : ID to match request with reply.
osd_screen : OSD Screen index.
osd_screen_param_index : Index within the screen.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 27 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OSD/AP_OSD_ParamScreen.cpp#L606

OSD_PARAM_SHOW_CONFIG_REPLY (ID 11036) SUPPORTED

Summary

The OSD_PARAM_SHOW_CONFIG_REPLY message is the response to an OSD_PARAM_SHOW_CONFIG (11035)
query. It returns the details of a specific parameter configured on the OSD screen, including its name,
min/max limits, and tuning increment.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports config to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_OSD library immediately after processing the query.

Core Logic

The implementation is in AP_OSD_ParamScreen::handle_read_msg within

libraries/AP_OSD/AP_OSD_ParamScreen.cpp:606.

Data Fields

request_id : ID matching the request.
result : OSD_PARAM_CONFIG_ERROR enum.
param_id : Parameter name string.
config_type : Config type (OSD_PARAM_CONFIG_TYPE).
min_value : Minimum value.
max_value : Maximum value.
increment : Step size.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 28 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/osd-param-show-config.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OSD/AP_OSD_ParamScreen.cpp#L606

MCU_STATUS (ID 11039) SUPPORTED

Summary

The MCU_STATUS message reports the health telemetry of the Flight Controller's microcontroller unit
(MCU). This includes the core temperature and the input voltage to the MCU rail (VDD_5V or VDD_3V3
depending on board design).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports MCU health to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the GCS_MAVLINK library using data from the HAL (Hardware Abstraction
Layer).

Core Logic

The implementation is in GCS_MAVLINK::send_mcu_status within

libraries/GCS_MAVLink/GCS_Common.cpp:244.

It reads directly from the hal.analogin interface:

mcu_temperature() : Internal temperature sensor of the STM32.
mcu_voltage() : Voltage measured on the VDD pin or internal reference.

Data Fields

MCU_Temperature : Temperature in centi-degrees Celsius (degC * 100).
MCU_Voltage : Voltage in milli-volts (mV).
MCU_Voltage_min : Minimum voltage recorded since boot (mV).
MCU_Voltage_max : Maximum voltage recorded since boot (mV).
id : MCU instance ID (usually 0).

Practical Use Cases

1. Overheating Warning:

Scenario: A flight controller is enclosed in a sealed box with no airflow.
Action: The GCS monitors MCU_Temperature . If it exceeds 85°C, it warns the pilot of
potential thermal shutdown or IMU degradation.

2. Brownout Detection:
Scenario: The 5V BEC powering the flight controller is overloaded by a servo.
Action: The MCU_Voltage_min field drops below 4500mV. Post-flight logs reveal the dip,
explaining why the GPS glitched (as its voltage also sagged).

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 29 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L244
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html

libraries/GCS_MAVLink/GCS_Common.cpp:244: Implementation of the sender.

TELEMETRY

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 30 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L244

ATTITUDE (ID 30) SUPPORTED

Summary

The ATTITUDE message provides the vehicle's orientation in three-dimensional space using Euler angles
(Roll, Pitch, and Yaw). It also includes the angular velocity (rotation rates) for each axis. This is the primary
telemetry packet used by Ground Control Stations to drive the Artificial Horizon and heading indicators.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports orientation to GCS)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_attitude within

libraries/GCS_MAVLink/GCS_Common.cpp:5816.

Data Sourcing

State Estimator: Data is retrieved directly from the AP_AHRS (Attitude and Heading Reference
System) library, which fuses data from the IMU, Compass, and GPS.
Format:

roll , pitch , yaw : Provided in radians.

rollspeed , pitchspeed , yawspeed : Angular velocity in .
Timestamp: Uses AP_HAL::millis() since boot.

Scheduling

Sent as part of the MSG_ATTITUDE stream.
Triggered in GCS_Common.cpp:6065 within the try_send_message loop.
High-frequency message: Typically streamed at 20Hz - 50Hz for a smooth UI experience.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
roll : Roll angle (rad, -pi..+pi).
pitch : Pitch angle (rad, -pi..+pi).
yaw : Yaw angle (rad, -pi..+pi).
rollspeed : Roll angular speed (rad/s).
pitchspeed : Pitch angular speed (rad/s).
yawspeed : Yaw angular speed (rad/s).

Practical Use Cases

1. Artificial Horizon:

Scenario: A pilot is flying FPV (First Person View) through thick fog.
Action: The GCS HUD uses the roll and pitch values to draw a virtual horizon, allowing
the pilot to maintain level flight without visual cues from the camera.

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 31 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5816
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

2. Heading Lock Verification:

Scenario: During an AUTO mission, the user wants to ensure the drone is pointing toward the
next waypoint.
Action: The GCS monitors the yaw field and compares it against the "Desired Yaw" to verify
the flight controller is tracking the path correctly.

3. Vibration/Buffeting Detection:

Scenario: A plane is flying in high turbulence.
Action: A developer analyzes the rollspeed and pitchspeed fields to quantify how much
the airframe is being shaken by external forces.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5816: Implementation of send_attitude .
libraries/AP_AHRS/AP_AHRS.h: Source of orientation data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 32 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5816
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AHRS/AP_AHRS.h

ATTITUDE_QUATERNION (ID 31) SUPPORTED

Summary

The ATTITUDE_QUATERNION message provides the vehicle's orientation using unit quaternions (

). While Euler angles (used in the ATTITUDE message) are more intuitive for human pilots,

quaternions are mathematically superior for 3D visualization and navigation algorithms because they avoid
"Gimbal Lock"—a state where orientation becomes ambiguous at 90 degrees of pitch.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Advanced orientation telemetry)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_attitude_quaternion within

libraries/GCS_MAVLink/GCS_Common.cpp:5833.

Data Sourcing

Source: Data is retrieved from the AP_AHRS library via AP::[ahrs](/field-manual/mavlink-
interface/ahrs.html)().get_quaternion() .
Fields:

q1 (), q2 (), q3 (), q4 (): Normalized components of the attitude quaternion.

rollspeed , pitchspeed , yawspeed : Angular velocity in (same as ID 30).
Timestamp: Uses AP_HAL::millis() since boot.

Scheduling

Sent as part of the MSG_ATTITUDE_QUATERNION stream.
Triggered in GCS_Common.cpp:6070 within the try_send_message loop.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
q1 : Quaternion component 1, w (1 in null-rotation).
q2 : Quaternion component 2, x (0 in null-rotation).
q3 : Quaternion component 3, y (0 in null-rotation).
q4 : Quaternion component 4, z (0 in null-rotation).
rollspeed : Roll angular speed (rad/s).
pitchspeed : Pitch angular speed (rad/s).
yawspeed : Yaw angular speed (rad/s).

Practical Use Cases

1. 3D Model Rendering:

Scenario: A Ground Control Station displays a high-fidelity 3D model of the drone that rotates
in real-time.

q ​, q ​, q ​, q ​w x y z

q ​w q ​x q ​y q ​z

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 33 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5833

Action: The renderer uses the quaternion data to update the model's rotation matrix. This
ensures smooth movement even during vertical climbs or aerobatic maneuvers where Euler
angles might glitch.

2. VR/AR HUDs:

Scenario: A pilot is using AR (Augmented Reality) glasses to see the drone's attitude overlaid
on their real-world vision.
Action: Quaternions are used to align the virtual horizon precisely with the headset's inertial
frame without complex trigonometric conversions.

3. Advanced Log Analysis:

Scenario: A researcher is analyzing the stability of a new airframe design.
Action: By using quaternions, the researcher can accurately calculate the error between
"Desired" and "Actual" orientation throughout the entire sphere of rotation.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5833: Implementation of
send_attitude_quaternion .
libraries/AP_AHRS/AP_AHRS.h: Source of quaternion data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 34 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5833
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AHRS/AP_AHRS.h

LOCAL_POSITION_NED (ID 32) SUPPORTED

Summary

The LOCAL_POSITION_NED message provides the vehicle's position and velocity in a local North-East-Down
(NED) coordinate system. Unlike GLOBAL_POSITION_INT , which uses Latitude/Longitude, this message
uses meters relative to a fixed local "Origin" (usually the EKF origin established at boot or GPS lock). It is
essential for navigation in environments where relative distance is more critical than absolute global
coordinates.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Local state telemetry)
RX (Receive): None (Use VISION_POSITION_ESTIMATE or ODOMETRY for external input)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_local_position within

libraries/GCS_MAVLink/GCS_Common.cpp:2979.

Data Sourcing

State Estimator: Data is retrieved from the AP_AHRS library.
Position: Sourced via [ahrs](/field-manual/mavlink-
interface/ahrs.html).get_relative_position_NED_origin() . This returns meters North, East,
and Down relative to the EKF origin.
Velocity: Sourced via ahrs.get_velocity_NED() , providing ground speed components in m/s.
Timestamp: Uses AP_HAL::millis() since boot.

Scheduling

Sent as part of the MSG_LOCAL_POSITION stream.
Triggered in GCS_Common.cpp:6134 within the try_send_message loop.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
x : X Position (meters).
y : Y Position (meters).
z : Z Position (meters).
vx : X Speed (m/s).
vy : Y Speed (m/s).
vz : Z Speed (m/s).

Practical Use Cases

1. Indoor Flight Visualization:

Scenario: A drone is flying in a warehouse using Optical Flow and has no GPS.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 35 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-interface/vision-position-estimate.html
https://mavlinkhud.com/field-manual/mavlink-interface/odometry.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2979
https://mavlinkhud.com/field-manual/mavlink-interface/optical-flow.html

Action: The GCS uses LOCAL_POSITION_NED to draw the drone's path on a blank grid, as
Latitude/Longitude are either unavailable or inaccurate.

2. Swarm Coordination:
Scenario: Multiple drones are performing a light show.
Action: An orchestrating computer monitors the NED coordinates of all drones to ensure they
maintaining the correct relative spacing in their "stage" coordinate system.

3. Visual Odometry Debugging:

Scenario: A developer is integrating a Realsense T265 camera for external positioning.
Action: The developer compares the vehicle's reported LOCAL_POSITION_NED (the EKF's
fused result) against the raw camera output to tune the EKF's trust in the external sensor.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2979: Implementation of send_local_position .
libraries/AP_AHRS/AP_AHRS.h: Provides the relative position and velocity data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 36 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2979
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AHRS/AP_AHRS.h

GLOBAL_POSITION_INT (ID 33) SUPPORTED

Summary

The GLOBAL_POSITION_INT message is the primary source of absolute geographic positioning data in
MAVLink. It provides the vehicle's Latitude, Longitude, and Altitude (both AMSL and relative to Home) using
integer representation for high efficiency and precision. It is the core message used by Ground Control
Stations for map plotting and altitude display.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Primary position telemetry)
RX (Receive): All Vehicles (Used for "Follow Me" and Multi-Vehicle Avoidance)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_global_position_int within

libraries/GCS_MAVLink/GCS_Common.cpp:5872.

Data Sourcing

Coordinate Source: Data is fused by the EKF and provided by the AP_AHRS library via [ahrs]
(/field-manual/mavlink-interface/ahrs.html).get_location() .
Format:

lat , lon : Sourced in .
alt : Altitude Above Mean Sea Level (AMSL) in millimeters.
relative_alt : Altitude relative to the Home position in millimeters.

heading : Vehicle yaw sourced from ahrs.yaw_sensor in centidegrees (to).
vx , vy , vz : Ground speed components in cm/s.

Scheduling

Sent as part of the MSG_GLOBAL_POSITION_INT stream.
Triggered in GCS_Common.cpp:6102 within the try_send_message loop.

Reception (RX)

ArduPilot handles this message in various specialized libraries, most notably AP_Follow and

AP_Avoidance .

Follow Me: In libraries/AP_Follow/AP_Follow.cpp, ArduPilot receives GLOBAL_POSITION_INT from a
"Lead" vehicle or a GCS to track and follow its position in real-time.
ADSB/Avoidance: Used to track the positions of other MAVLink-enabled vehicles in the vicinity to
trigger collision avoidance maneuvers.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
lat : Latitude, expressed as degrees * 1E7.

degrees × 107

0 35999

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 37 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5872
https://mavlinkhud.com/field-manual/mavlink-interface/home-position.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Follow/AP_Follow.cpp
https://mavlinkhud.com/field-manual/object-avoidance/adsb-collision-avoidance.html
https://mavlinkhud.com/field-manual/mavlink-interface/collision.html

lon : Longitude, expressed as degrees * 1E7.
alt : Altitude (MSL). Note that virtually all GPS modules provide both WGS84 and MSL.
relative_alt : Altitude above the home position.
vx : Ground X Speed (Latitude, positive north).
vy : Ground Y Speed (Longitude, positive east).
vz : Ground Z Speed (Altitude, positive down).
hdg : Vehicle heading (max 65535, valid 0-35999).

Practical Use Cases

1. GCS Map Display:
Scenario: A pilot is flying a 10km long-range mission.
Action: The GCS uses lat and lon to update the vehicle's position on the map at high
frequency (typically 5Hz - 10Hz).

2. Terrain Following Verification:

Scenario: A drone is flying 10m above a sloping hill.
Action: The pilot monitors relative_alt to ensure the vehicle is maintaining the correct
height relative to the take-off point, regardless of the absolute AMSL altitude.

3. Lead-Follow Swarming:

Scenario: A "Follower" drone is slaved to a "Leader" drone.
Action: The Follower receives the Leader's GLOBAL_POSITION_INT and calculates the
required offset to maintain its position in the formation.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5872: TX implementation.
libraries/AP_Follow/AP_Follow.cpp: RX implementation for vehicle following.
libraries/AP_AHRS/AP_AHRS.h:586: Source of yaw_sensor data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 38 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5872
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Follow/AP_Follow.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AHRS/AP_AHRS.h#L586

VFR_HUD (ID 74) SUPPORTED

Summary

The VFR_HUD (Visual Flight Rules Head-Up Display) message is a bandwidth-optimized packet designed
specifically to drive the dashboard instruments of a Ground Control Station. It aggregates the most critical
flight metrics—speed, altitude, heading, throttle, and vertical speed—into a single 20-byte payload,
reducing the need for the GCS to parse multiple high-frequency streams like ATTITUDE and
GLOBAL_POSITION_INT .

Status

Supported

Directionality

TX (Transmit): All Vehicles (Summary telemetry)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_vfr_hud within

libraries/GCS_MAVLink/GCS_Common.cpp:3390.

Data Sourcing

ArduPilot uses vehicle-specific virtual functions to populate the fields:

airspeed : Sourced from the AP_Airspeed library. If no airspeed sensor is present, ArduPilot may
fall back to an EKF wind-speed estimate.
groundspeed : Provided by AP::[ahrs](/field-manual/mavlink-interface/ahrs.html)
().groundspeed() in m/s.
heading : Provided by AP::ahrs().yaw_sensor in degrees (-).

throttle : Represented as a percentage (-). For Copters, this is derived from the motor
mixer's average output.
alt : Current altitude Above Mean Sea Level (AMSL) in meters.
climb : Vertical velocity (climb rate) in m/s.

Bandwidth Optimization

VFR_HUD is the "Swiss Army Knife" of telemetry. By streaming this single message at 5Hz-10Hz, a GCS can
maintain a fully functional HUD even on very low-bandwidth links (like long-range 915MHz radios) where
sending full position and attitude packets would cause lag.

Data Fields

airspeed : Current airspeed in m/s.
groundspeed : Current ground speed in m/s.
heading : Current heading in degrees, in compass units (0..360, 0=north).
throttle : Current throttle setting in integer percent, 0 to 100.
alt : Current altitude (MSL), in meters.
climb : Current climb rate in meters/second.

0 360
0 100

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 39 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3390
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

Practical Use Cases

1. Dashboard Telemetry:

Scenario: A pilot is flying a long-range FPV mission.
Action: The GCS HUD uses VFR_HUD as the primary source for the Speed Tape, Altimeter
Tape, and Compass Rose.

2. Stall Prevention:

Scenario: A fixed-wing plane is performing an autonomous climb.
Action: The pilot monitors the airspeed field in the HUD. If it drops toward the "Stall Speed"
(calculated GCS-side), the pilot can take manual control or adjust the throttle.

3. Variometer Feedback:
Scenario: A glider pilot is looking for thermals.
Action: The climb rate field is used to drive an audio variometer (beeping) on the ground
station, helping the pilot identify rising air.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3390: Common implementation.
ArduPlane/GCS_Mavlink.cpp:277: Plane-specific airspeed and throttle logic.
ArduCopter/GCS_Mavlink.cpp:246: Copter-specific throttle logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 40 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/manual-control.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3390
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L277
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L246

BATTERY_STATUS (ID 147) SUPPORTED (CRITICAL)

Summary

The BATTERY_STATUS message provides a comprehensive report on the vehicle's power source health.
Unlike the simpler SYS_STATUS (which only reports total voltage and current), BATTERY_STATUS supports
multiple battery instances and provides detailed information including individual cell voltages, temperature,
and remaining capacity. This is the primary message used by Ground Control Stations for advanced battery
telemetry and "Smart Battery" integration.

Status

Supported (Critical)

Directionality

TX (Transmit): All Vehicles (Broadcasts battery state)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is centered in GCS_MAVLINK::send_battery_status within

libraries/GCS_MAVLink/GCS_Common.cpp:266.

Data Sourcing

Multiple Instances: ArduPilot iterates through all active battery monitors configured via the
BATT_MONITOR parameters. It sends a separate BATTERY_STATUS packet for each, using the id
field to distinguish them.
Cell Voltages:

Standard (1-10): The message reports up to 10 cell voltages in the voltages array (in
millivolts).
Extended (11-14): ArduPilot uses MAVLink extensions to report cells 11 through 14 in the
voltages_ext field.

Temperature: If the battery monitor backend supports it (e.g., SMBus or DroneCAN), the internal
battery temperature is reported in centidegrees Celsius.
Current and Capacity: Sourced from the AP_BattMonitor library, providing current_consumed
(mAh) and battery_remaining (percentage).

Data Fields

id : Battery ID.
battery_function : Function of the battery.
type : Type (chemistry) of the battery.
temperature : Temperature in centi-degrees Celsius.
voltages : Battery voltage of cells, in millivolts (1 = 1 millivolt).
current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not
measure the current.
current_consumed : Consumed charge, in milliampere hours (1 = 1 mAh), -1: autopilot does not
provide consumption estimate.
energy_consumed : Consumed energy, in 100*Joules (interrim test).
battery_remaining : Remaining battery energy. (0\%: 0, 100\%: 100), -1: autopilot does not
estimate the remaining battery.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 41 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/sys-status.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L266
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

time_remaining : Remaining battery time, 0: autopilot does not provide remaining battery time
estimate.
charge_state : State for additional protection, see MAV_BATTERY_CHARGE_STATE.
voltages_ext : Battery voltages for cells 11-14.
mode : Battery mode.
fault_bitmask : Fault/health indications.

Practical Use Cases

1. Individual Cell Health Monitoring:

Scenario: A high-value octocopter is using a 12S LiPo battery.
Action: The GCS monitors the voltages array. If one cell drops significantly below the
others (e.g., 3.2V vs 3.7V), the GCS triggers a "Battery Imbalance" warning, allowing the pilot
to land before the cell fails.

2. Smart Battery Integration:

Scenario: A drone is equipped with a Tattu or Grepow Smart Battery that communicates via
SMBus.
Action: ArduPilot reads the battery's internal cycle count and temperature and relays this via
BATTERY_STATUS . The GCS displays this information, helping the operator track the long-
term health of their battery fleet.

3. Dual Battery Redundancy:
Scenario: A drone uses two parallel batteries for redundancy.
Action: The GCS displays two separate battery widgets (ID 0 and ID 1). If one battery starts
drawing significantly more current than the other, it indicates a connector issue or an aging
pack.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:266: Implementation of the MAVLink packet
construction.
libraries/AP_BattMonitor/AP_BattMonitor.cpp: Primary source for all battery-related data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 42 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L266
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_BattMonitor/AP_BattMonitor.cpp

AHRS (ID 163) SUPPORTED

Summary

The AHRS message reports the internal state of the Attitude Heading Reference System (AHRS),
specifically focusing on gyro drift estimates and attitude error metrics. It is useful for monitoring the health
and convergence of the EKF or DCM estimator.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports AHRS health)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by GCS_MAVLINK::send_ahrs within

libraries/GCS_MAVLink/GCS_Common.cpp:2424.

Data Fields

omegaIx : X gyro drift estimate (rad/s).
omegaIy : Y gyro drift estimate (rad/s).
omegaIz : Z gyro drift estimate (rad/s).
accel_weight : Average accel_weight (0 to 1). Currently sent as 0.
renorm_val : Average renormalisation value (0 to 1). Currently sent as 0.
error_rp : Average error_roll_pitch value (0 to 1).
error_yaw : Average error_yaw value (0 to 1).

Practical Use Cases

1. Vibration Diagnosis:

Scenario: A user experiences "EKS FAIL" warnings.
Action: Analyzing omegaIx/y/z in the logs can reveal if the gyro bias estimates are
fluctuating wildly, often a sign of excessive vibration or a failing IMU.

2. Magnetic Interference:
Scenario: A rover's heading drifts during a turn.
Action: error_yaw increasing indicates the compass reading disagrees with the gyro
integration, potentially due to magnetic interference from motors.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2424: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 43 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2424
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2424

EFI_STATUS (ID 225) SUPPORTED (RX & TX)

Summary

Status of an Electronic Fuel Injection (EFI) engine.

Status

Supported (RX & TX)

Directionality

TX (Transmit): All Vehicles - Forwards EFI status to GCS.
RX (Receive): All Vehicles - Receives status from EFI hardware (e.g., via CAN or Serial).

Transmission (TX)

ArduPilot streams this message to the GCS to report engine health.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Reception (RX)

Handled by AP_EFI::handle_EFI_message . Allows a serial-connected EFI unit to inject its status into the
autopilot.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Data Fields

health : Health flags.
ecu_index : ECU instance.
rpm : Engine RPM.
fuel_consumed : Fuel consumed (cm^3).
fuel_flow : Fuel flow rate (cm^3/min).
engine_load : Engine load percentage.
throttle_position : Throttle position percentage.
spark_dwell_time : Spark dwell time.
barometric_pressure : Barometric pressure (kPa).
intake_manifold_pressure : Intake pressure (kPa).
intake_air_temperature : Intake temp (degC).
cylinder_head_temperature : CHT (degC).
ignition_timing : Ignition timing (deg).
injection_time : Injection time.
exhaust_gas_temperature : EGT (degC).
throttle_out : Throttle output percentage.
pt_compensation : Pressure/Temp compensation.

Practical Use Cases

1. Gas Engine Monitoring:
Scenario: A large gasoline-powered VTOL plane.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 44 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1124
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4495

Action: The pilot monitors cylinder_head_temperature and rpm to ensure the engine is
not overheating during hover.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Handler and Streamer.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 45 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

HOME_POSITION (ID 242) SUPPORTED (CRITICAL)

Summary

The HOME_POSITION message defines the vehicle's reference point for return-to-launch (RTL) maneuvers
and distance-from-home calculations. It provides the global coordinates (Latitude, Longitude, Altitude) of
the take-off location or a user-defined mission origin. This message is critical for GCS situational awareness
and for ensuring the drone has a valid recovery point before embarking on an autonomous mission.

Status

Supported (Critical)

Directionality

TX (Transmit): All Vehicles (Reports the current home location)
RX (Receive): None (Use SET_HOME_POSITION (243) to override the home location)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_home_position within

libraries/GCS_MAVLink/GCS_Common.cpp:3032.

Data Sourcing

AHRS Home: Data is retrieved from the AP_AHRS library via get_home() .
Coordinate Format:

Latitude/Longitude: Sourced in .

Altitude: Sourced as MSL altitude in millimeters.
Relative Position: Includes the X, Y, and Z distance (in meters) from the local EKF origin to
the Home position.

Trigger Logic

ArduPilot sends this message:

1. Periodically: As part of the MSG_HOME telemetry stream (typically at a low rate like 0.5Hz or 1Hz).
2. On Demand: In response to a MAV_CMD_GET_HOME_POSITION command.
3. On Set: Automatically whenever the Home position is initialized or updated (e.g., at the moment of
arming).

Data Fields

latitude : Latitude (WGS84), in degrees * 1E7.
longitude : Longitude (WGS84, in degrees * 1E7.
altitude : Altitude (MSL), in meters * 1000 (positive for up).
x : Local X position of this position in the local coordinate frame.
y : Local Y position of this position in the local coordinate frame.
z : Local Z position of this position in the local coordinate frame.
q : World to surface normal and heading transformation of the takeoff position. Used to indicate the
heading and slope of the ground.
approach_x : Local X position of the end of the approach vector. Multicopters should set this
position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as

degrees × 107

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 46 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/mavlink-interface/set-home-position.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3032
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html

multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff,
assuming the takeoff happened from the threshold / touchdown zone.
approach_y : Local Y position of the end of the approach vector. Multicopters should set this
position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff,
assuming the takeoff happened from the threshold / touchdown zone.
approach_z : Local Z position of the end of the approach vector. Multicopters should set this
position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff,
assuming the takeoff happened from the threshold / touchdown zone.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).

Practical Use Cases

1. RTL Safety Check:

Scenario: A pilot is about to fly a long-range mission.
Action: The GCS checks for the presence of the HOME_POSITION message. If not received,
the GCS shows a "Home Not Set" warning and may prevent the pilot from arming, ensuring
the drone won't attempt to return to an unknown location.

2. Distance-to-Home Display:

Scenario: A drone is 2km away from the pilot.
Action: The GCS HUD calculates the distance between the vehicle's current
GLOBAL_POSITION_INT (33) and the HOME_POSITION (242) to show a live "Distance" readout
to the pilot.

3. Mission Origin Alignment:

Scenario: A surveyor is using a pre-planned mission that relies on relative altitudes.
Action: The GCS uses the HOME_POSITION altitude as the reference point, ensuring the

mission's vertical steps are executed at the correct heights above the ground.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3032: Implementation of the MAVLink packet
construction.
libraries/AP_AHRS/AP_AHRS.h: Provides the get_home() interface.

0m

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 47 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3032
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AHRS/AP_AHRS.h

AIS_VESSEL (ID 301) SUPPORTED

Summary

The AIS_VESSEL message reports the position, velocity, and identification of a marine vessel detected by
an onboard AIS (Automatic Identification System) receiver. This allows the Autopilot and Ground Control
Station to track maritime traffic and, in some cases, perform collision avoidance.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports detected vessels to GCS)
RX (Receive): None (Autopilot consumes raw NMEA from AIS hardware, not MAVLink)

Transmission (TX)

The message is generated by the AP_AIS library, which parses incoming data from an AIS receiver
connected to a serial port.

Core Logic

The implementation is in AP_AIS::send within libraries/AP_AIS/AP_AIS.cpp:264.

1. Database: The library maintains a list of detected vessels (_list).
2. Scheduling: It iterates through the list and transmits a message for a vessel if:

The data has updated since the last transmission.
30 seconds have elapsed (periodic refresh).

3. TSLC: It calculates tslc (Time Since Last Communication) to let the GCS know how stale the data
is.

Data Fields

MMSI : Mobile Marine Service Identity.
lat : Latitude (deg * 1E7).
lon : Longitude (deg * 1E7).
COG : Course over ground (deg * 100).
heading : True heading (deg * 100).
SOG : Speed over ground (cm/s).
callsign : The vessel callsign.
name : The vessel name.
width : Width of the vessel (meters).
length : Length of the vessel (meters).
type : Type of vessel.
dimension_bow : Distance from GPS to bow (meters).
dimension_stern : Distance from GPS to stern (meters).
dimension_port : Distance from GPS to port (meters).
dimension_starboard : Distance from GPS to starboard (meters).
tslc : Time since last communication (seconds).
flags : Bitmask to indicate various statuses including valid data fields.
rot : Rate of turn (deg/min).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 48 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/collision.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AIS/AP_AIS.cpp#L264

Practical Use Cases

1. Maritime Patrol:

Scenario: A drone is inspecting a harbor.
Action: The GCS displays all ships on the map with their names and vectors (SOG/COG),
allowing the pilot to identify vessels without visual confirmation.

2. Collision Avoidance:

Scenario: An autonomous boat is navigating a channel.
Action: The Autopilot uses the lat/lon and SOG of surrounding AIS targets to calculate
Time to Closest Point of Approach (TCPA) and steer clear of moving ships.

Key Codebase Locations

libraries/AP_AIS/AP_AIS.cpp:264: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 49 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AIS/AP_AIS.cpp#L264

GENERATOR_STATUS (ID 373) SUPPORTED

Summary

The GENERATOR_STATUS message provides telemetry for an onboard electrical generator (e.g.,
RichenPower hybrid generator). It reports the operational state (Idle, Generating, Fault), electrical output,
and maintenance metrics.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports generator state to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_Generator library. Specific backends (like
AP_Generator_RichenPower) implement the logic to populate this message from the generator's serial
telemetry.

Core Logic

The implementation example is in AP_Generator_RichenPower::send_generator_status within
libraries/AP_Generator/AP_Generator_RichenPower.cpp:438.

It maps internal generator states (Idle, Run, Charge) to the standard MAV_GENERATOR_STATUS_FLAG bitmask.

Data Fields

status : Status flags.
generator_speed : Speed of electrical generator or alternator.
battery_current : Current into/out of battery.
load_current : Current going to the UAV.
power_generated : The power being generated.
bus_voltage : Voltage of the bus seen at the generator, or battery voltage if battery is active.
rectifier_temperature : The temperature of the rectifier or other inverter.
generator_temperature : The temperature of the mechanical motor, fuel cell core or generator.
bat_current_setpoint : The target battery current.
runtime : Seconds this generator has run since it was rebooted.
time_until_maintenance : Seconds until this generator requires maintenance. A negative value
indicates maintenance is past-due.

Practical Use Cases

1. Hybrid Drones:
Scenario: A petrol-electric hybrid multirotor.
Action: The GCS displays the generator_speed and bus_voltage . If the generator stalls
(status becomes OFF while in air), the GCS triggers a critical alarm, warning the pilot they
are running on reserve battery power only.

2. Maintenance Tracking:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 50 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Generator/AP_Generator_RichenPower.cpp#L438
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

Scenario: Fleet management.
Action: The time_until_maintenance field allows ground crews to schedule oil changes or
engine service proactively.

Key Codebase Locations

libraries/AP_Generator/AP_Generator_RichenPower.cpp:438: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 51 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Generator/AP_Generator_RichenPower.cpp#L438

RELAY_STATUS (ID 376) SUPPORTED

Summary

The RELAY_STATUS message reports the current state (On/Off) of the vehicle's relay pins. Relays are digital
switches often used to control lights, camera triggers, or power to peripherals.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports relay states to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_Relay library. It is typically sent at low frequency or upon change.

Core Logic

The implementation is in AP_Relay::send_relay_status within libraries/AP_Relay/AP_Relay.cpp:655.

It supports reporting up to 16 relays using bitmasks.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
on : Relay state. 1 bit per relay. 0: off, 1: on.
present : Relay present. 1 bit per relay. 0: not configured, 1: configured.

Practical Use Cases

1. Remote Switch Verification:

Scenario: A user toggles a switch on their RC transmitter to turn on landing lights (connected
to Relay 1).
Action: The GCS receives RELAY_STATUS . It sees Bit 0 of on go high and updates the UI
indicator to show the lights are ON.

Key Codebase Locations

libraries/AP_Relay/AP_Relay.cpp:655: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 52 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Relay/AP_Relay.cpp#L655
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Relay/AP_Relay.cpp#L655

AOA_SSA (ID 11020) SUPPORTED (PLANE ONLY)

Summary

The AOA_SSA message reports the vehicle's Angle of Attack (AoA) and Side Slip Angle (SSA). This is
critical for fixed-wing aircraft to monitor aerodynamic performance and prevent stalls.

Status

Supported (Plane Only)

Directionality

TX (Transmit): Autopilot (Reports AoA/SSA to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the ArduPlane firmware's GCS_Mavlink module.

Core Logic

The implementation is in GCS_MAVLINK_Plane::send_aoa_ssa within ArduPlane/GCS_Mavlink.cpp:190.

It pulls data directly from the AHRS:

ahrs.getAOA() : Angle of Attack in degrees.
ahrs.getSSA() : Side Slip Angle in degrees.

These values may be synthesized from inertial data and airspeed, or measured directly by an AoA sensor
(like a vane).

Data Fields

time_usec : Timestamp (us since UNIX epoch).
AOA : Angle of Attack (degrees).
SSA : Side Slip Angle (degrees).

Practical Use Cases

1. Stall Warning:

Scenario: A pilot is flying a glider near its limits.
Action: The GCS monitors AOA . If it exceeds the critical angle (e.g., 15 degrees), an audible
alarm is triggered.

2. Turn Coordination:

Scenario: Tuning yaw dampers.
Action: Analyzing the SSA log to minimize sideslip during turns.

Key Codebase Locations

ArduPlane/GCS_Mavlink.cpp:190: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 53 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L190
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L190

ESC_TELEMETRY_1_TO_4 (ID 11030) SUPPORTED

Summary

The ESC_TELEMETRY_1_TO_4 message provides real-time telemetry data for the first four Electronic Speed
Controllers (ESCs). This includes voltage, current, RPM, and temperature, which are critical for monitoring
propulsion health.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library. It aggregates data from various sources
(BLHeli_S/32, DroneCAN, DShot) and standardizes it into MAVLink messages.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It groups ESCs into blocks of 4. If ESC_TELEMETRY_1_TO_4 is full, it moves to ESC_TELEMETRY_5_TO_8

(11031), and so on, up to 32 ESCs.

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts (V * 100).
current : Array of 4 currents in centi-amps (A * 100).
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts (or packet counts depending on ESC type).

Practical Use Cases

1. Propulsion Failure Detection:

Scenario: A motor bearing seizes mid-flight.
Action: The current for that motor spikes while RPM drops. The GCS logs this anomaly,
helping post-flight diagnostics.

2. Battery Management:
Scenario: Long-range flight.
Action: The GCS sums the totalcurrent (mAh) from all ESCs to cross-check the battery
monitor's consumption estimate.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 54 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/custom-airframes/dshot-backend-logic.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-5-to-8.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428: Implementation of the sender.

ESC_TELEMETRY_5_TO_8 (ID 11031) SUPPORTED

Summary

The ESC_TELEMETRY_5_TO_8 message provides real-time telemetry data for Electronic Speed Controllers
(ESCs) 5 through 8. It follows the same structure and logic as ESC_TELEMETRY_1_TO_4 (11030).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within
libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It is populated if the system has more than 4 active ESCs (e.g., an Octocopter).

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts.
current : Array of 4 currents in centi-amps.
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 55 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428

ESC_TELEMETRY_9_TO_12 (ID 11032) SUPPORTED

Summary

The ESC_TELEMETRY_9_TO_12 message provides real-time telemetry data for Electronic Speed Controllers
(ESCs) 9 through 12. It follows the same structure and logic as ESC_TELEMETRY_1_TO_4 (11030).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It is populated if the system has more than 8 active ESCs (e.g., a Dodecacopter or Dodeca-Hexa).

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts.
current : Array of 4 currents in centi-amps.
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 56 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428

ESC_TELEMETRY_13_TO_16 (ID 11040) SUPPORTED

Summary

The ESC_TELEMETRY_13_TO_16 message provides real-time telemetry data for Electronic Speed Controllers
(ESCs) 13 through 16. It follows the same structure and logic as ESC_TELEMETRY_1_TO_4 (11030).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It is populated if the system has more than 12 active ESCs.

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts.
current : Array of 4 currents in centi-amps.
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 57 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428

ESC_TELEMETRY_17_TO_20 (ID 11041) SUPPORTED

Summary

The ESC_TELEMETRY_17_TO_20 message provides real-time telemetry data for Electronic Speed Controllers
(ESCs) 17 through 20. It follows the same structure and logic as ESC_TELEMETRY_1_TO_4 (11030).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It is populated if the system has more than 16 active ESCs.

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts.
current : Array of 4 currents in centi-amps.
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 58 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428

ESC_TELEMETRY_21_TO_24 (ID 11042) SUPPORTED

Summary

The ESC_TELEMETRY_21_TO_24 message provides real-time telemetry data for Electronic Speed Controllers
(ESCs) 21 through 24. It follows the same structure and logic as ESC_TELEMETRY_1_TO_4 (11030).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It is populated if the system has more than 20 active ESCs.

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts.
current : Array of 4 currents in centi-amps.
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 59 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428

ESC_TELEMETRY_25_TO_28 (ID 11043) SUPPORTED

Summary

The ESC_TELEMETRY_25_TO_28 message provides real-time telemetry data for Electronic Speed Controllers
(ESCs) 25 through 28. It follows the same structure and logic as ESC_TELEMETRY_1_TO_4 (11030).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It is populated if the system has more than 24 active ESCs.

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts.
current : Array of 4 currents in centi-amps.
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 60 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428

ESC_TELEMETRY_29_TO_32 (ID 11044) SUPPORTED

Summary

The ESC_TELEMETRY_29_TO_32 message provides real-time telemetry data for Electronic Speed Controllers
(ESCs) 29 through 32. It follows the same structure and logic as ESC_TELEMETRY_1_TO_4 (11030).

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports ESC status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_ESC_Telem library.

Core Logic

The implementation is in AP_ESC_Telem::send_esc_telemetry_mavlink within

libraries/AP_ESC_Telem/AP_ESC_Telem.cpp:428.

It is populated if the system has more than 28 active ESCs (e.g., massive Drone Light Show swarms or
complex VTOLs).

Data Fields

temperature : Array of 4 temperatures in degC.
voltage : Array of 4 voltages in centi-volts.
current : Array of 4 currents in centi-amps.
totalcurrent : Array of 4 consumed energy values in mAh.
rpm : Array of 4 RPM values.
count : Array of 4 error counts.

SENSORS

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 61 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ESC_Telem/AP_ESC_Telem.cpp#L428
https://mavlinkhud.com/field-manual/mission-scenarios/drone-light-show.html

GPS_RAW_INT (ID 24) SUPPORTED

Summary

The GPS_RAW_INT message provides raw satellite positioning data from the vehicle's primary GPS receiver.
It includes latitude, longitude, altitude (MSL), and velocity components, along with quality indicators like the
number of satellites visible and horizontal dilution of precision (HDOP).

Status

Supported

Directionality

TX (Transmit): All Vehicles (Streams GPS 0 data)
RX (Receive): None (Use GPS_INPUT or HIL_GPS for external input)

Transmission (TX)

The primary transmission logic is in AP_GPS::send_mavlink_gps_raw within

libraries/AP_GPS/AP_GPS.cpp:1370.

Data Sourcing

Primary Instance: This message specifically sends data from the first GPS instance (instance 0).
For second GPS units, ArduPilot uses the ArduPilot-specific message GPS2_RAW (ID 124).
Coordinate Format: Latitude and Longitude are sent as int32_t with a scale of 1E7.
Altitude: Sourced as Altitude above Mean Sea Level (MSL) in millimeters.
Velocity: Sourced from the GPS driver's velocity vector, converted to cm/s for ground speed and
centidegrees for course over ground.

Scheduling

Sent as part of the MSG_GPS_RAW stream.
Triggered in GCS_Common.cpp:6204 within the try_send_message loop.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
fix_type : GPS fix type (GPS_FIX_TYPE).
lat : Latitude (WGS84, EGM96 ellipsoid), in degrees * 1E7.
lon : Longitude (WGS84, EGM96 ellipsoid), in degrees * 1E7.
alt : Altitude (MSL). Positive for up.
eph : GPS HDOP horizontal dilution of precision in cm (m*100). If unknown, set to: UINT16_MAX.
epv : GPS VDOP vertical dilution of precision in cm (m*100). If unknown, set to: UINT16_MAX.
vel : GPS ground speed (m/s * 100). If unknown, set to: UINT16_MAX.
cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99
degrees. If unknown, set to: UINT16_MAX.
satellites_visible : Number of satellites visible. If unknown, set to 255.

Practical Use Cases

1. Map Plotting:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 62 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/gps-input.html
https://mavlinkhud.com/field-manual/mavlink-interface/hil-gps.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS.cpp#L1370
https://mavlinkhud.com/field-manual/mavlink-interface/gps2-raw.html

Scenario: A tablet running QGroundControl needs to show the drone's icon on a satellite map.
Action: QGC reads lat and lon from GPS_RAW_INT to position the icon.

2. Signal Quality Monitoring:
Scenario: A pilot is flying near tall buildings and wants to ensure the GPS link is stable.
Action: The HUD monitors satellites_visible and eph (HDOP). If satellites drop below 6
or HDOP rises above 200 (2.0), the GCS warns the pilot of "Poor GPS Health".

3. Antenna Tracking:

Scenario: A long-range antenna tracker needs to point a directional antenna at the drone.
Action: The tracker calculates the heading from its own position to the lat / lon reported
by the vehicle.

Key Codebase Locations

libraries/AP_GPS/AP_GPS.cpp:1370: Implementation of the MAVLink packet construction.
libraries/GCS_MAVLink/GCS_Common.cpp:6204: Scheduling and stream control.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 63 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS.cpp#L1370
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6204

SCALED_IMU (ID 26) SUPPORTED

Summary

The SCALED_IMU message provides high-frequency acceleration and rotation data from the vehicle's
primary inertial sensors. Unlike legacy MAVLink implementations that distinguish between "Raw" (ADC
values) and "Scaled" (physics units), ArduPilot's RAW_IMU and SCALED_IMU both provide physics-ready

values (mG and). The primary distinction in ArduPilot is the timestamp format and instance
mapping.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Outgoing telemetry)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_scaled_imu within
libraries/GCS_MAVLink/GCS_Common.cpp:2259.

Data Sourcing

Primary Instance: SCALED_IMU (ID 26) transmits data specifically from IMU 0.
Time Source: Uses a millisecond timestamp (AP_HAL::millis()).
Scaling:

Accelerometer: Scaled to milli-G (mG).
Gyroscope: Scaled to millirad/s (rad/s * 1000).
Magnetometer: Scaled to milli-Gauss (mGauss).

Stream Configuration

In ArduPilot's default RAW_SENSORS stream (typically SRx_RAW_SENS), RAW_IMU (27) is used for IMU 0 to
take advantage of microsecond precision. Consequently, SCALED_IMU (26) is often redundant for the
primary sensor and may not be active in default configurations. However, SCALED_IMU2 (115) and
SCALED_IMU3 (129) are the standard way secondary and tertiary IMUs are reported.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
xacc : X acceleration (mg).
yacc : Y acceleration (mg).
zacc : Z acceleration (mg).
xgyro : Angular speed around X axis (millirad /sec).
ygyro : Angular speed around Y axis (millirad /sec).
zgyro : Angular speed around Z axis (millirad /sec).
xmag : X Magnetic field (milli tesla).
ymag : Y Magnetic field (milli tesla).
zmag : Z Magnetic field (milli tesla).

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 64 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/raw-imu.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2259
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-imu2.html
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-imu3.html

Practical Use Cases

1. Vibration Analysis:

Scenario: A builder is worried about motor balance and wants to check "Vibe" levels in real-
time.
Action: The GCS graphs the xacc , yacc , and zacc fields at high frequency (e.g., 50Hz) to
visualize mechanical noise.

2. Orientation Verification:

Scenario: A user has mounted the flight controller sideways.
Action: By observing rotation rates (xgyro , ygyro , zgyro) while physically rotating the
drone, the user can verify if the BOARD_ORIENTATION parameter is set correctly.

3. Peripheral Monitoring:

Scenario: Monitoring the health of a redundant IMU system.
Action: Comparing the outputs of SCALED_IMU (IMU 0) against SCALED_IMU2 (IMU 1) to
check for sensor drift or hardware failure.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2259: Implementation of send_scaled_imu .
libraries/GCS_MAVLink/GCS_Common.cpp:6305: The message scheduler case.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 65 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2259
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6305

RAW_IMU (ID 27) SUPPORTED

Summary

The RAW_IMU message is the high-precision companion to SCALED_IMU . In ArduPilot, both messages

provide physics-scaled values (mG and), but RAW_IMU leverages a 64-bit microsecond timestamp

(time_usec), making it the preferred message for high-frequency telemetry used in vibration analysis and
IMU debugging.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Outgoing telemetry)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_raw_imu within

libraries/GCS_MAVLink/GCS_Common.cpp:2150.

Data Sourcing

Primary Instance: This message specifically transmits data from IMU 0.
Timestamp: Uses AP_HAL::micros64() , providing the best possible temporal resolution for the
data.
Scaling:

Accelerometer: Scaled to milli-G (mG).
Gyroscope: Scaled to millirad/s (rad/s * 1000).
Magnetometer: Scaled to milli-Gauss (mGauss).

Temperature: Includes the IMU's internal temperature sensor data in centidegrees Celsius.

Scheduling

Sent as part of the MSG_RAW_IMU stream.
This message is usually prioritized in the "Raw Sensors" stream configuration to ensure ground
control stations have high-fidelity sensor logs.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
xacc : X acceleration (raw).
yacc : Y acceleration (raw).
zacc : Z acceleration (raw).
xgyro : Angular speed around X axis (raw).
ygyro : Angular speed around Y axis (raw).
zgyro : Angular speed around Z axis (raw).
xmag : X Magnetic field (raw).
ymag : Y Magnetic field (raw).
zmag : Z Magnetic field (raw).
id : Id. Optional, default: 0.

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 66 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/scaled-imu.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2150
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

temperature : Temperature (centidegrees). Optional, default: 0.

Practical Use Cases

1. FFT Tuning:

Scenario: A pilot is setting up a Notch Filter to eliminate motor noise.
Action: The GCS captures a burst of RAW_IMU data and performs a Fast Fourier Transform
(FFT) to identify the resonant frequencies of the frame. The microsecond timestamps are
critical for accurate frequency mapping.

2. IMU Health Check:

Scenario: During pre-flight, the GCS detects "IMU Mismatch".
Action: The operator compares RAW_IMU (IMU 0) against other IMU messages to see if a
particular sensor is producing erratic or noisy values while stationary.

3. Blackbox Logging (Remote):

Scenario: A developer is testing a vehicle too small for a high-speed SD card.
Action: The telemetry link is saturated with RAW_IMU packets, allowing the developer to
reconstruct the flight dynamics on a remote ground station with high precision.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2150: Implementation of send_raw_imu .
libraries/GCS_MAVLink/GCS.h:360: Declaration of the send function.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 67 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2150
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS.h#L360

SCALED_PRESSURE (ID 29) SUPPORTED

Summary

The SCALED_PRESSURE message provides calibrated environmental data, specifically absolute pressure (for
altitude) and differential pressure (for airspeed). This message is the primary source for the Altimeter and
Airspeed indicators in a Ground Control Station.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports altitude/airspeed data)
RX (Receive): Antenna Tracker (Syncs altitude for tracking)

Transmission (TX)

The transmission logic is implemented in GCS_MAVLINK::send_scaled_pressure within

libraries/GCS_MAVLink/GCS_Common.cpp:2354.

Data Sourcing

Absolute Pressure (press_abs): Sourced from the primary barometer (Index 0) via AP_Baro .
Values are in Hectopascals (hPa).
Differential Pressure (press_diff): Sourced from the primary airspeed sensor (Index 0) via
AP_Airspeed . Values are in hPa.
Temperature: Includes the barometer's ambient temperature reading in centidegrees Celsius.

Reception (RX)

While most vehicles only send this data, the Antenna Tracker firmware receives it.

Handler: Tracker::tracking_update_pressure in AntennaTracker/tracking.cpp.
Purpose: The tracker compares its local pressure against the vehicle's pressure to calculate a high-
precision relative altitude, which is critical for aiming the directional antenna accurately at the drone.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
press_abs : Absolute pressure (hectopascal).
press_diff : Differential pressure 1 (hectopascal).
temperature : Temperature (centidegrees Celsius).

Practical Use Cases

1. HUD Altimeter:

Scenario: A pilot is flying in a mountainous area.
Action: The GCS uses press_abs to calculate the vehicle's barometric altitude, providing a
stable height reference that doesn't suffer from GPS vertical jitter.

2. Airspeed Verification:

Scenario: A fixed-wing pilot is flying in high winds.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 68 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2354
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/AntennaTracker/tracking.cpp

Action: The GCS monitors press_diff . If the reading stays near zero while flying fast, the
GCS warns of a "Pitot Tube Blockage".

3. Automatic Antenna Aiming:
Scenario: A long-range mission requires a high-gain antenna.
Action: The Antenna Tracker uses received SCALED_PRESSURE packets to maintain a vertical
lock on the vehicle's position.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2308: Core logic for populating pressure data.
libraries/AP_Baro/AP_Baro.h: Source of absolute pressure data.
libraries/AP_Airspeed/AP_Airspeed.h: Source of differential pressure data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 69 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2308
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Baro/AP_Baro.h
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Airspeed/AP_Airspeed.h

OPTICAL_FLOW (ID 100) SUPPORTED

Summary

The OPTICAL_FLOW message provides 2D velocity data based on the optical movement of the ground
beneath the vehicle. It is a critical sensor message for GPS-denied navigation, allowing the flight controller
to maintain a stable horizontal position (loiter) indoors or in deep urban canyons. ArduPilot can both receive
this data from external MAVLink sensors (like the PX4Flow) and transmit it to Ground Control Stations for
real-time visualization of sensor health.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports sensor data to GCS)
RX (Receive): All Vehicles (Accepts data from external MAVLink flow sensors)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_optical_flow in

libraries/GCS_MAVLink/GCS_Common.cpp:4047.

Data Processing

1. Backend Dispatch: The message is passed to the AP_OpticalFlow library, which identifies the
MAV backend.

2. Accumulation: In AP_OpticalFlow_MAV.cpp, the flow_x , flow_y , and quality values are
integrated into a running sum.

3. EKF Fusion: During the next EKF (Extended Kalman Filter) update, these integrated values are
converted into body-frame velocity estimates. The quality field is used to determine how much
the EKF should "trust" the data (e.g., quality < 50 may be ignored).

Transmission (TX)

ArduPilot relays optical flow data to the GCS via the MSG_OPTICAL_FLOW stream.

Purpose: This allows pilots to verify that the flow sensor is working correctly (e.g., seeing the "Flow"
graph move when they physically tilt the drone) without needing to connect directly to the sensor
hardware.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
sensor_id : Sensor ID.
flow_x : Flow in x-sensor direction (deci-pixels).
flow_y : Flow in y-sensor direction (deci-pixels).
flow_comp_m_x : Flow in x-sensor direction, angular-speed compensated (m).
flow_comp_m_y : Flow in y-sensor direction, angular-speed compensated (m).
quality : Optical flow quality / confidence. 0: bad, 255: maximum quality.
ground_distance : Ground distance (m). Positive value: distance known. Negative value: Unknown
distance.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 70 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4047
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpticalFlow/AP_OpticalFlow_MAV.cpp
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html

flow_rate_x : Flow rate about X axis (rad/s).
flow_rate_y : Flow rate about Y axis (rad/s).

Practical Use Cases

1. Stable Indoor Hover:
Scenario: A pilot is flying a drone inside a high-ceiling warehouse where GPS is unavailable.
Action: The drone uses the OPTICAL_FLOW message from an onboard camera to counter
drift, allowing the pilot to take their hands off the sticks while the drone holds position
perfectly.

2. Precision Landing:
Scenario: A drone is landing on a small target with a specific visual pattern.
Action: As the drone nears the ground, the optical flow sensor provides high-resolution
horizontal velocity data that is more accurate than GPS, allowing for a smoother and more
precise touchdown.

3. Terrain Following (Low Alt):
Scenario: A drone is flying 1m above the ground.
Action: While primarily using a rangefinder for height, the optical flow data (combined with
height) provides a robust velocity reference that is unaffected by atmospheric pressure
changes.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4047: Entry point for flow data.
libraries/AP_OpticalFlow/AP_OpticalFlow_MAV.cpp: MAVLink backend implementation.
libraries/AP_OpticalFlow/AP_OpticalFlow.cpp: Frontend sensor management.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 71 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/ekf-failsafes/terrain-estimation.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4047
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpticalFlow/AP_OpticalFlow_MAV.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpticalFlow/AP_OpticalFlow.cpp

GLOBAL_VISION_POSITION_ESTIMATE (ID 101) SUPPORTED

Summary

The GLOBAL_VISION_POSITION_ESTIMATE message is used by external positioning systems (like Vicon or
SLAM) to provide the vehicle with a globally-referenced position and attitude estimate. While the MAVLink
standard distinguishes this from local estimates, ArduPilot unifies both into its "External Navigation" pipeline
to support high-precision flight in environments where GPS is unavailable or untrusted.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Enables external navigation input)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_global_vision_position_estimate in

libraries/GCS_MAVLink/GCS_Common.cpp:3859.

Data Processing

1. Decoding: The message is decoded and passed to a common handler for vision data
(GCS_Common.cpp:3919).

2. Library Integration: The data is forwarded to the AP_VisualOdom library.
3. EKF Fusion: The AP_VisualOdom_MAV backend converts the meters-based X, Y, and Z coordinates
into a format suitable for the EKF (Extended Kalman Filter). The EKF then treats this as a primary
position source (External Navigation) via AP_AHRS::writeExtNavData .

Data Fields

usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
x : Global X position (meters).
y : Global Y position (meters).
z : Global Z position (meters).
roll : Roll angle (rad).
pitch : Pitch angle (rad).
yaw : Yaw angle (rad).
covariance : Pose covariance matrix upper right triangle (first six entries are the first ROW, next
five entries are the second ROW, etc.).
reset_counter : Estimate reset counter. This should be incremented when the estimate jumps in a
discontinuous creation (e.g. at the start of a mission or when the system recovers from a tracking
failure).

Practical Use Cases

1. Vicon/Optitrack Integration:

Scenario: A researcher is flying a drone in a motion capture laboratory.
Action: The lab computer tracks the drone and streams GLOBAL_VISION_POSITION_ESTIMATE
at 50Hz-100Hz. The drone flies with millimeter precision, even with no GPS lock.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 72 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3859
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3919
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

2. Autonomous Greenhouse Monitoring:

Scenario: A drone is navigating between rows of crops in a greenhouse using a pre-mapped
SLAM environment.
Action: The onboard SLAM computer sends global-referenced coordinates to the autopilot,
allowing the drone to follow complex inspection routes autonomously.

3. GPS-Denied Surveying:

Scenario: A drone is surveying the inside of a large storage tank.
Action: A laser-based positioning system provides absolute coordinates to the flight
controller, ensuring the survey data is spatially accurate.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3859: Message entry point.
libraries/AP_VisualOdom/AP_VisualOdom_MAV.cpp:26: MAVLink backend for visual odometry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 73 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3859
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom_MAV.cpp#L26
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html

VISION_POSITION_ESTIMATE (ID 102) SUPPORTED

Summary

The VISION_POSITION_ESTIMATE message is the standard MAVLink packet for providing local X, Y, and Z
position data from an external vision system (e.g., SLAM or Visual Odometry). ArduPilot uses this message
to enable stable flight and autonomous navigation in GPS-denied environments.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Enables external navigation input)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_vision_position_estimate in

libraries/GCS_MAVLink/GCS_Common.cpp:3850.

Data Processing

1. Unification: In ArduPilot's implementation, VISION_POSITION_ESTIMATE and
GLOBAL_VISION_POSITION_ESTIMATE (101) are handled by the same internal pipeline

(GCS_Common.cpp:3919).
2. State Estimation: The data is forwarded to the AP_VisualOdom library.
3. EKF Injection: The message provides position (X, Y, Z in meters) and attitude (Roll, Pitch, Yaw in
radians). These are injected into the EKF as "External Navigation" data. This allows the vehicle to
hold its position based purely on camera-derived movement.

Data Fields

usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
x : Global X position (meters).
y : Global Y position (meters).
z : Global Z position (meters).
roll : Roll angle (rad).
pitch : Pitch angle (rad).
yaw : Yaw angle (rad).
covariance : Pose covariance matrix upper right triangle (first six entries are the first ROW, next
five entries are the second ROW, etc.).
reset_counter : Estimate reset counter. This should be incremented when the estimate jumps in a
discontinuous creation (e.g. at the start of a mission or when the system recovers from a tracking
failure).

Practical Use Cases

1. Companion Computer SLAM:

Scenario: An Intel Realsense T265 camera is connected to a Jetson Nano onboard the drone.
Action: The Jetson Nano runs a SLAM algorithm and sends VISION_POSITION_ESTIMATE to
the flight controller at 30Hz. The pilot can then switch to "Position Hold" or "Auto" mode

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 74 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3850
https://mavlinkhud.com/field-manual/mavlink-interface/global-vision-position-estimate.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3919
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html

indoors.
2. Swarm Robotics in Studios:

Scenario: Multiple drones are performing synchronized dance routines in a studio equipped
with infrared cameras.
Action: The central studio controller tracks each drone and sends local coordinates, ensuring
no collisions and perfect synchronization.

3. Visual Docking:

Scenario: A drone is attempting to land on a moving rover with a visual target.
Action: A visual tracking system calculates the drone's position relative to the target and
provides it via MAVLink, allowing for a precise automated landing.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3850: Message entry point.
libraries/AP_VisualOdom/AP_VisualOdom.cpp:193: Common pose handling logic.
libraries/AP_VisualOdom/AP_VisualOdom_MAV.cpp:26: MAVLink backend for visual odometry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 75 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3850
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom.cpp#L193
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom_MAV.cpp#L26

VISION_SPEED_ESTIMATE (ID 103) SUPPORTED

Summary

The VISION_SPEED_ESTIMATE message is used by external sensors to provide 3D velocity data (X, Y, Z in
meters per second) to the flight controller. This is often used as a supplement to position estimates or as a
standalone source for velocity fusion in the EKF (Extended Kalman Filter), allowing the vehicle to maintain
stability based on perceived movement even if absolute global or local position is unknown.

Status

Supported

Directionality

TX (Transmit): None (Except SITL for simulation)
RX (Receive): All Vehicles (Enables external velocity input)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_vision_speed_estimate in

libraries/GCS_MAVLink/GCS_Common.cpp:3964.

Data Processing

1. Decoding: The message is decoded into X, Y, and Z velocity components ().
2. Visual Odometry Integration: The data is passed to the AP_VisualOdom frontend

(AP_VisualOdom.cpp:235).
3. EKF Fusion: The MAVLink backend for visual odometry calls AP_AHRS::writeExtNavVelData . This
pushes the external velocity directly into the EKF's state vector. This is particularly useful for
damping and position-hold stability.

Data Fields

usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
x : Global X speed (m/s).
y : Global Y speed (m/s).
z : Global Z speed (m/s).
covariance : Linear velocity covariance matrix (m/s)^2. Upper right triangle (first three entries are
the first ROW, next two entries are the second ROW, etc.).
reset_counter : Estimate reset counter. This should be incremented when the estimate jumps in a
discontinuous creation (e.g. at the start of a mission or when the system recovers from a tracking
failure).

Practical Use Cases

1. Velocity-Only SLAM:

Scenario: An external camera system provides high-frequency velocity data but the position
drifts too much for absolute navigation.
Action: The autopilot uses VISION_SPEED_ESTIMATE to "brake" and hold position effectively,
while ignoring the drifting position data.

2. Optical Flow Enhancement:

m/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 76 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3964
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom.cpp#L235
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-interface/optical-flow.html

Scenario: A high-end optical flow system calculates 3D velocity using a downward-facing
camera and IMU.
Action: The system sends VISION_SPEED_ESTIMATE to ArduPilot, providing a more robust
velocity reference than the standard OPTICAL_FLOW (100) message.

3. Wind Speed Correction (Experimental):

Scenario: A ground-based anemometer array tracks the drone and estimates its true ground
speed.
Action: The ground system sends velocity updates to the drone via MAVLink to improve its
flight controller's performance in turbulent conditions.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3964: Message entry point.
libraries/AP_VisualOdom/AP_VisualOdom_MAV.cpp:62: EKF integration logic for velocity
estimates.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 77 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/optical-flow.html
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3964
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom_MAV.cpp#L62

VICON_POSITION_ESTIMATE (ID 104) SUPPORTED

Summary

The VICON_POSITION_ESTIMATE message is used to provide high-precision position and orientation data
from an external Motion Capture (MoCap) system, such as Vicon or OptiTrack. This is the "Gold Standard"
for indoor flight, providing millimeter-level accuracy that allows for aggressive autonomous maneuvers in
environments where GPS is blocked or multipathed.

Status

Supported

Directionality

TX (Transmit): None (Except SITL for simulation)
RX (Receive): All Vehicles (Enables MoCap-based navigation)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_vicon_position_estimate in

libraries/GCS_MAVLink/GCS_Common.cpp:3868.

Data Processing

1. Decoding: The message is decoded into local X, Y, and Z position () and Roll, Pitch, and Yaw

attitude ().
2. Unification: Like other vision messages, the data is forwarded to the AP_VisualOdom library.
3. EKF Fusion: The data is pushed to the EKF as "External Navigation" (ExtNav). Because MoCap data
is extremely low-noise and has very low latency, the EKF can be tuned to "trust" this source almost
exclusively, enabling extremely stable hover and precise path tracking.

Data Fields

usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
x : Global X position (meters).
y : Global Y position (meters).
z : Global Z position (meters).
roll : Roll angle (rad).
pitch : Pitch angle (rad).
yaw : Yaw angle (rad).
covariance : Pose covariance matrix upper right triangle (first six entries are the first ROW, next
five entries are the second ROW, etc.).

Practical Use Cases

1. Indoor Research Labs:

Scenario: A university team is testing a new obstacle avoidance algorithm using multiple
drones.
Action: The lab's Vicon system tracks all drones and sends individual
VICON_POSITION_ESTIMATE packets to each flight controller. This provides a "Ground Truth"
for the drones to navigate safely within the lab.

2. Cinematic Stage Flight:

m

rad

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 78 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3868
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html

Scenario: A drone is required to fly a precise 3D path around actors on a film set inside a
studio.
Action: An OptiTrack system provides the drone with its coordinates, ensuring the flight path
is repeatable and safe to within a few centimeters.

3. HIL Simulation Testing:

Scenario: A developer wants to test how the drone reacts to high-frequency position updates.
Action: ArduPilot's SITL (Software In The Loop) simulator can be configured to generate
"Fake Vicon" data, allowing the developer to test the ExtNav pipeline without a physical lab.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3868: Message entry point.
libraries/SITL/SIM_Vicon.cpp: SITL simulator for MoCap systems.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 79 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3868
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/SITL/SIM_Vicon.cpp

HIGHRES_IMU (ID 105) SUPPORTED

Summary

The HIGHRES_IMU message is a high-fidelity, integrated sensor packet designed for performance-critical
applications like Visual-Inertial Odometry (VIO) and high-speed logging. Unlike standard IMU messages that
use 16-bit integers, HIGHRES_IMU uses single-precision floats for all sensor data and provides a unified
view of the Accelerometer, Gyroscope, Magnetometer, and Barometer.

Status

Supported (Requires > 1MB Flash)

Directionality

TX (Transmit): All Vehicles (High-fidelity sensor stream)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_highres_imu within

libraries/GCS_MAVLink/GCS_Common.cpp:2183.

Data Sourcing

This message aggregates data from across the sensor stack:

IMU: Accelerometer () and Gyroscope () data from the primary IMU.

Compass: Magnetometer () data.

Barometer: Absolute pressure () and Pressure Altitude ().

Airspeed: Differential pressure () if an airspeed sensor is active.
Timestamp: Uses a 64-bit microsecond timestamp (time_usec) for precise data alignment.

Efficiency

The "Highres" designation refers to the use of IEEE 754 floats, which allow for much greater dynamic range
and precision compared to the scaled integers used in RAW_IMU or SCALED_IMU .

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
xacc : X acceleration (m/s^2).
yacc : Y acceleration (m/s^2).
zacc : Z acceleration (m/s^2).
xgyro : Angular speed around X axis (rad/s).
ygyro : Angular speed around Y axis (rad/s).
zgyro : Angular speed around Z axis (rad/s).
xmag : X Magnetic field (Gauss).
ymag : Y Magnetic field (Gauss).
zmag : Z Magnetic field (Gauss).
abs_pressure : Absolute pressure (hectopascal).
diff_pressure : Differential pressure (hectopascal).
pressure_alt : Altitude calculated from pressure.

m/s2 rad/s
Gauss

hPa m

hPa

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 80 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/odometry.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2183
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/raw-imu.html
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-imu.html

temperature : Temperature (degrees celsius).
fields_updated : Bitmap for fields that have updated since last message, bit 0 = xacc, bit 12:
temperature.
id : Id. Optional, default: 0.

Practical Use Cases

1. VIO/SLAM Integration:

Scenario: A drone is flying indoors using a companion computer (e.g., Raspberry Pi) running
VIO (Visual Inertial Odometry).
Action: The companion computer subscribes to HIGHRES_IMU at 100Hz+. The high-precision
float values and integrated microsecond timestamps are used to fuse camera data with IMU
movement, providing stable position estimates in GPS-denied environments.

2. External Kalman Filtering:

Scenario: A researcher is developing a custom navigation filter on a ground computer.
Action: The researcher logs HIGHRES_IMU data. Because it includes pressure and
magnetometer data in the same packet as the IMU, the researcher doesn't have to worry
about inter-message jitter or alignment issues.

3. High-Speed Vibration Monitoring:

Scenario: Testing a new propulsion system with very high RPM motors.
Action: The developer uses HIGHRES_IMU to capture the full spectrum of high-frequency
vibrations that might be clipped or aliased by lower-resolution integer messages.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2183: Implementation of send_highres_imu .
libraries/GCS_MAVLink/GCS_config.h:131: Conditional compilation logic based on board flash
size.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 81 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2183
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_config.h#L131

SCALED_IMU2 (ID 116) SUPPORTED

Summary

The SCALED_IMU2 message provides high-frequency acceleration and rotation data from the vehicle's
secondary inertial sensor (IMU 1). ArduPilot uses this message to stream data from redundant IMUs,
allowing Ground Control Stations to monitor the health and alignment of secondary sensors in multi-IMU
systems.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Secondary IMU telemetry)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is implemented in a unified helper GCS_MAVLINK::send_scaled_imu within
libraries/GCS_MAVLink/GCS_Common.cpp:2259.

Data Sourcing

Secondary Instance: This message specifically transmits data from IMU 1.
Time Source: Uses a millisecond timestamp (AP_HAL::millis()).
Scaling: (Identical to SCALED_IMU ID 26)

Accelerometer: Scaled to milli-G (mG).
Gyroscope: Scaled to millirad/s (rad/s * 1000).
Magnetometer: Scaled to milli-Gauss (mGauss).

Scheduling

Sent as part of the MSG_SCALED_IMU2 stream.
Triggered in GCS_Common.cpp:6312 within the try_send_message loop.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
xacc : X acceleration (mg).
yacc : Y acceleration (mg).
zacc : Z acceleration (mg).
xgyro : Angular speed around X axis (millirad /sec).
ygyro : Angular speed around Y axis (millirad /sec).
zgyro : Angular speed around Z axis (millirad /sec).
xmag : X Magnetic field (milli tesla).
ymag : Y Magnetic field (milli tesla).
zmag : Z Magnetic field (milli tesla).

Practical Use Cases

1. Redundancy Monitoring:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 82 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2259
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-imu.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

Scenario: A high-end hexacopter has triple-redundant IMUs.
Action: The GCS graphs SCALED_IMU (IMU 0) and SCALED_IMU2 (IMU 1) together. If one
sensor shows significantly more vibration than the other, the pilot can identify a mechanical
issue near that specific sensor mounting point.

2. Vibration Isolation Testing:

Scenario: A builder is testing a new silicone damping mount for the flight controller.
Action: By comparing the data from a hard-mounted IMU (reported via one message) against
a dampened IMU (reported via another), the builder can quantify the effectiveness of the
vibration isolation.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2259: Core logic for scaling and sending IMU data.
libraries/GCS_MAVLink/GCS_Common.cpp:6310: Dispatcher for the secondary IMU stream.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 83 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2259
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6310

GPS2_RAW (ID 124) SUPPORTED

Summary

The GPS2_RAW message provides raw satellite positioning data from the vehicle's secondary GPS receiver
(GPS 1). In multi-GPS or "Blended" setups, this message allows the Ground Control Station (GCS) to monitor
the health and fix quality of the backup receiver independently of the primary or fused position estimate.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports secondary GPS data)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in AP_GPS::send_mavlink_gps2_raw within

libraries/AP_GPS/AP_GPS.cpp:1405.

Data Sourcing

Secondary Instance: Unlike GPS_RAW_INT (24) which uses GPS instance 0, this message
specifically pulls data from GPS instance 1.
Fields: Includes the standard set of GPS metrics:

lat , lon : Sourced in .

alt : MSL Altitude in millimeters.
vel , cog : Ground speed (cm/s) and Course Over Ground (centidegrees).
satellites_visible : Number of satellites used by the secondary receiver.
dgps_numch , dgps_age : Metadata for Differential GPS (DGPS) or RTK correction.

Scheduling

Sent as part of the MSG_GPS2_RAW stream.
Triggered in GCS_Common.cpp:6213 within the try_send_message loop.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
fix_type : GPS fix type (GPS_FIX_TYPE).
lat : Latitude (WGS84, EGM96 ellipsoid), in degrees * 1E7.
lon : Longitude (WGS84, EGM96 ellipsoid), in degrees * 1E7.
alt : Altitude (MSL). Positive for up.
eph : GPS HDOP horizontal dilution of precision in cm (m*100). If unknown, set to: UINT16_MAX.
epv : GPS VDOP vertical dilution of precision in cm (m*100). If unknown, set to: UINT16_MAX.
vel : GPS ground speed (m/s * 100). If unknown, set to: UINT16_MAX.
cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99
degrees. If unknown, set to: UINT16_MAX.
satellites_visible : Number of satellites visible. If unknown, set to 255.
dgps_numch : Number of DGPS satellites.
dgps_age : Age of DGPS info.

degrees × 107

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 84 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS.cpp#L1405
https://mavlinkhud.com/field-manual/mavlink-interface/gps-raw-int.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Practical Use Cases

1. Redundancy Verification:

Scenario: A high-value cinematic drone is flying a mission.
Action: The pilot monitors GPS_RAW_INT and GPS2_RAW side-by-side. If the primary GPS
loses lock (drops to 0 satellites), the pilot can see if the secondary GPS still has a healthy 3D
fix before deciding to continue the flight.

2. Blended GPS Analysis:

Scenario: A developer is using GPS_TYPE=1 (Blending) to merge data from two different
brands of GPS receivers.
Action: The developer logs both messages to analyze which receiver provides better
performance in high-multipath environments (e.g., near buildings).

3. RTK Baseline Monitoring:

Scenario: Using a "Moving Baseline" setup for GPS Yaw.
Action: The GCS uses GPS2_RAW to verify that the "Rover" GPS (the secondary unit) is
receiving RTK corrections from the "Base" GPS.

Key Codebase Locations

libraries/AP_GPS/AP_GPS.cpp:1405: Implementation of the MAVLink packet construction for GPS 1.
libraries/GCS_MAVLink/GCS_Common.cpp:6213: Scheduling logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 85 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/ekf-failsafes/gps-glitch-protection.html
https://mavlinkhud.com/field-manual/sensor-architecture/gps-integration.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS.cpp#L1405
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6213

GPS_RTK (ID 127) SUPPORTED

Summary

The GPS_RTK message provides detailed status information about the Real-Time Kinematic (RTK) baseline
solution from the primary GPS receiver. It includes the baseline vector (X, Y, Z in millimeters) and accuracy
metrics. This message is primarily supported by specific high-precision GPS drivers (Septentrio SBF, Swift
Navigation SBP, and Emlid ERB).

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports RTK baseline)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by AP_GPS_Backend::send_mavlink_gps_rtk within

libraries/AP_GPS/GPS_Backend.cpp:176.

Drivers

Only specific GPS drivers implement the supports_mavlink_gps_rtk_message() flag to enable this
message:

SBF: Septentrio
SBP: Swift Navigation (Piksi)
ERB: Emlid Reach

Data Fields

time_last_baseline_ms : Time since last baseline (ms) - Currently sent as 0.
rtk_receiver_id : RTK receiver ID - Currently sent as 0.
wn : GPS Week Number of last baseline.
tow : GPS Time of Week of last baseline (ms).
rtk_health : RTK health - Currently sent as 0.
rtk_rate : RTK rate - Currently sent as 0.
nsats : Number of satellites used for RTK.
baseline_a_mm : RTK Baseline Coordinate A (mm) - (North or ECEF X depending on
baseline_coords_type).
baseline_b_mm : RTK Baseline Coordinate B (mm) - (East or ECEF Y depending on
baseline_coords_type).
baseline_c_mm : RTK Baseline Coordinate C (mm) - (Down or ECEF Z depending on
baseline_coords_type).
accuracy : RTK accuracy (mm).
iar_num_hypotheses : Integer Ambiguity Resolution hypotheses.

Practical Use Cases

1. Baseline Monitoring:

Scenario: A user is setting up a dual-GPS yaw system using SBF receivers.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 86 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/GPS_Backend.cpp#L176

Action: The GCS monitors baseline_a/b/c_mm to visualize the vector between the two
antennas, ensuring it matches the physical mounting distance.

Key Codebase Locations

libraries/AP_GPS/GPS_Backend.cpp:176: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 87 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/GPS_Backend.cpp#L176

GPS2_RTK (ID 128) SUPPORTED

Summary

The GPS2_RTK message provides detailed status information about the Real-Time Kinematic (RTK) baseline
solution from the secondary GPS receiver. It functions identically to GPS_RTK (127).

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports secondary RTK baseline)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by AP_GPS_Backend::send_mavlink_gps_rtk within
libraries/AP_GPS/GPS_Backend.cpp:176.

Drivers

Only specific GPS drivers implement the supports_mavlink_gps_rtk_message() flag to enable this
message:

SBF: Septentrio
SBP: Swift Navigation (Piksi)
ERB: Emlid Reach

Data Fields

time_last_baseline_ms : Time since last baseline (ms) - Currently sent as 0.
rtk_receiver_id : RTK receiver ID - Currently sent as 0.
wn : GPS Week Number of last baseline.
tow : GPS Time of Week of last baseline (ms).
rtk_health : RTK health - Currently sent as 0.
rtk_rate : RTK rate - Currently sent as 0.
nsats : Number of satellites used for RTK.
baseline_a_mm : RTK Baseline Coordinate A (mm) - (North or ECEF X).
baseline_b_mm : RTK Baseline Coordinate B (mm) - (East or ECEF Y).
baseline_c_mm : RTK Baseline Coordinate C (mm) - (Down or ECEF Z).
accuracy : RTK accuracy (mm).
iar_num_hypotheses : Integer Ambiguity Resolution hypotheses.

Practical Use Cases

1. Dual-Antenna GPS Yaw:

Scenario: A rover uses two Swift Navigation Piksi Multi receivers for moving baseline yaw.
Action: The GCS monitors GPS_RTK (Primary) and GPS2_RTK (Secondary) to verify that both
units are calculating baselines correctly relative to the base station or each other.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 88 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/gps-rtk.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/GPS_Backend.cpp#L176
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/sensor-architecture/gps-integration.html

libraries/AP_GPS/GPS_Backend.cpp:176: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 89 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/GPS_Backend.cpp#L176

SCALED_IMU3 (ID 129) SUPPORTED

Summary

The SCALED_IMU3 message provides high-frequency acceleration and rotation data from the vehicle's
tertiary inertial sensor (IMU 2). This message is primarily used on high-end flight controllers with three or
more IMUs, providing the final layer of redundancy for state estimation.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Tertiary IMU telemetry)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is implemented in a unified helper GCS_MAVLINK::send_scaled_imu within
libraries/GCS_MAVLink/GCS_Common.cpp:2259.

Data Sourcing

Tertiary Instance: This message specifically transmits data from IMU 2.
Time Source: Uses a millisecond timestamp (AP_HAL::millis()).
Scaling: (Identical to SCALED_IMU ID 26)

Accelerometer: Scaled to milli-G (mG).
Gyroscope: Scaled to millirad/s (rad/s * 1000).
Magnetometer: Scaled to milli-Gauss (mGauss).

Scheduling

Sent as part of the MSG_SCALED_IMU3 stream.
Triggered in GCS_Common.cpp:6316 within the try_send_message loop.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
xacc : X acceleration (mg).
yacc : Y acceleration (mg).
zacc : Z acceleration (mg).
xgyro : Angular speed around X axis (millirad /sec).
ygyro : Angular speed around Y axis (millirad /sec).
zgyro : Angular speed around Z axis (millirad /sec).
xmag : X Magnetic field (milli tesla).
ymag : Y Magnetic field (milli tesla).
zmag : Z Magnetic field (milli tesla).

Practical Use Cases

1. Triple Redundancy Voting:

Scenario: A high-reliability flight controller uses a voting system between three IMUs.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 90 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2259
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-imu.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html

Action: If two IMUs agree but SCALED_IMU3 disagrees, the flight controller "votes out" the
tertiary sensor. The GCS displays this disagreement using the streamed data from all three
messages.

2. Hardware Identification:

Scenario: A developer is writing a driver for a new IMU chip mounted as the third sensor on a
custom board.
Action: The developer monitors SCALED_IMU3 to verify that the raw driver is correctly
passing scaled values to the GCS.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2259: Core logic for scaling and sending IMU data.
libraries/GCS_MAVLink/GCS_Common.cpp:6315: Dispatcher for the tertiary IMU stream.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 91 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2259
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6315

DISTANCE_SENSOR (ID 132) SUPPORTED

Summary

The DISTANCE_SENSOR message reports a single measurement from a distance sensor (LIDAR, Sonar,
Radar). It provides the distance, sensor type, min/max range, and the sensor's orientation relative to the
vehicle frame. This message is crucial for terrain following, precision landing, and obstacle avoidance.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports sensor data)
RX (Receive): None (ArduPilot consumes OBSTACLE_DISTANCE or OBSTACLE_DISTANCE_3D for
reception typically, though DISTANCE_SENSOR decoding exists in some limited proximity contexts)

Transmission (TX)

The transmission logic is in GCS_MAVLINK::send_distance_sensor within

libraries/GCS_MAVLink/GCS_Common.cpp:411.

Data Sourcing

ArduPilot aggregates data from two libraries:

1. AP_RangeFinder : For dedicated 1D sensors (e.g., downward facing altimeters).
Iterates through all healthy backends.
Populates type , orientation , min_distance , max_distance , and current_distance
directly from the driver.

2. AP_Proximity : For obstacle avoidance sensors (e.g., 360 LIDAR sectors).
Iterates through valid proximity sectors (0-7 for 8-way octomap).
Synthesizes a "Virtual Sensor" message for each active sector.
id starts at PROXIMITY_SENSOR_ID_START .

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
min_distance : Minimum distance the sensor can measure (cm).
max_distance : Maximum distance the sensor can measure (cm).
current_distance : Current distance reading (cm).
type : Type of distance sensor (MAV_DISTANCE_SENSOR_LASER , ULTRASOUND , etc.).
id : Onboard ID of the sensor.
orientation : Direction the sensor faces (MAV_SENSOR_ORIENTATION). 0=Forward, 24=Down.
covariance : Measurement covariance (cm^2), 0 for unknown.
horizontal_fov : Horizontal Field of View (radians).
vertical_fov : Vertical Field of View (radians).
quaternion : Quaternion of the sensor orientation (w, x, y, z).
signal_quality : Signal quality (0 = unknown, 1 = invalid, 100 = perfect).

Practical Use Cases

1. Terrain Following:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 92 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/obstacle-distance.html
https://mavlinkhud.com/field-manual/mavlink-interface/obstacle-distance-3d.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L411

Scenario: A plane is flying at low altitude over hilly terrain.
Action: The GCS monitors DISTANCE_SENSOR (Orientation: Down) to verify the plane is
maintaining the target AGL (Above Ground Level) altitude.

2. Obstacle Visualization:

Scenario: A copter is flying near a wall.
Action: The GCS receives a stream of DISTANCE_SENSOR messages with Orientations 0
(Forward), 2 (Right), etc., and draws a "Radar View" showing the distance to obstacles in
each quadrant.

3. Sensor Health Check:

Scenario: A pilot suspects a sonar sensor is faulty.
Action: Inspecting the message stream reveals that current_distance is stuck at
min_distance , indicating a hardware fault or noise floor issue.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:411: Implementation of the sender.
libraries/AP_RangeFinder/AP_RangeFinder.cpp: Source of rangefinder data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 93 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L411
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_RangeFinder/AP_RangeFinder.cpp
https://mavlinkhud.com/field-manual/ekf-failsafes/terrain-estimation.html

SCALED_PRESSURE2 (ID 137) SUPPORTED

Summary

The SCALED_PRESSURE2 message provides calibrated environmental data from the vehicle's secondary
sensors. It reports absolute pressure (from Barometer 2) and differential pressure (from Airspeed Sensor 2).
This allows Ground Control Stations to monitor sensor redundancy and health.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports secondary sensor data)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is implemented in GCS_MAVLINK::send_scaled_pressure2 within

libraries/GCS_MAVLink/GCS_Common.cpp:2359.

Data Sourcing

Absolute Pressure (press_abs): Sourced from the secondary barometer (Index 1) via AP_Baro .
Values are in Hectopascals (hPa).
Differential Pressure (press_diff): Sourced from the secondary airspeed sensor (Index 1) via
AP_Airspeed . Values are in hPa.
Temperature: Includes the barometer's ambient temperature reading in centidegrees Celsius.
Temperature Differential: Includes the airspeed sensor's temperature reading in centidegrees
Celsius.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
press_abs : Absolute pressure (hectopascal).
press_diff : Differential pressure 1 (hectopascal).
temperature : Absolute pressure temperature (centidegrees Celsius).
temperature_press_diff : Differential pressure temperature (centidegrees Celsius).

Practical Use Cases

1. Redundancy Checks:

Scenario: A pilot receives a "Bad Baro Health" warning.
Action: The GCS graphs SCALED_PRESSURE and SCALED_PRESSURE2 side-by-side. If
SCALED_PRESSURE is flatlining but SCALED_PRESSURE2 is responding to altitude changes, it
confirms the primary sensor has failed.

2. Dual Airspeed Setup:

Scenario: A VTOL plane has a pitot tube on each wing.
Action: The pilot monitors press_diff from both messages to ensure neither tube is
blocked by ice or debris.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 94 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2359
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-pressure.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

libraries/GCS_MAVLink/GCS_Common.cpp:2359: Message dispatcher.
libraries/GCS_MAVLink/GCS_Common.cpp:2308: Shared logic for populating pressure instances.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 95 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2359
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2308

ATT_POS_MOCAP (ID 138) SUPPORTED

Summary

The ATT_POS_MOCAP message provides high-precision position and attitude data from an external Motion
Capture (MoCap) system, such as Vicon or OptiTrack. It is functionally very similar to

VICON_POSITION_ESTIMATE (104) and VISION_POSITION_ESTIMATE (102), serving as another entry point
for external navigation data.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Enables MoCap-based navigation)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_att_pos_mocap in

libraries/GCS_MAVLink/GCS_Common.cpp:3948.

Data Processing

1. Decoding: The message is decoded into local X, Y, and Z position () and a Quaternion ()
for attitude.

2. Unification: The data is forwarded to the AP_VisualOdom library via handle_pose_estimate .
3. EKF Fusion: The EKF fuses this data as an External Navigation source, allowing the vehicle to fly
autonomously without GPS.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0).
x : X position (meters).
y : Y position (meters).
z : Z position (meters).
covariance : Pose covariance matrix upper right triangle.

Practical Use Cases

1. Indoor University Labs:

Scenario: A researcher uses an older MoCap system that natively outputs the
ATT_POS_MOCAP packet format.
Action: The researcher connects the MoCap computer to the drone's telemetry port.
ArduPilot treats the data identically to VICON_POSITION_ESTIMATE , enabling stable indoor
loiter.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3948: Message entry point.

m w,x, y, z

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 96 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/vicon-position-estimate.html
https://mavlinkhud.com/field-manual/mavlink-interface/vision-position-estimate.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3948
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3948

libraries/AP_VisualOdom/AP_VisualOdom.cpp: Core logic for handling pose estimates.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 97 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom.cpp

SCALED_PRESSURE3 (ID 143) SUPPORTED

Summary

The SCALED_PRESSURE3 message provides calibrated environmental data from the vehicle's tertiary
sensors. It reports absolute pressure (from Barometer 3) and differential pressure (from Airspeed Sensor 3).
This allows Ground Control Stations to monitor sensor redundancy and health.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports tertiary sensor data)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is implemented in GCS_MAVLINK::send_scaled_pressure3 within

libraries/GCS_MAVLink/GCS_Common.cpp:2364.

Data Sourcing

Absolute Pressure (press_abs): Sourced from the tertiary barometer (Index 2) via AP_Baro .
Values are in Hectopascals (hPa).
Differential Pressure (press_diff): Sourced from the tertiary airspeed sensor (Index 2) via
AP_Airspeed . Values are in hPa.
Temperature: Includes the barometer's ambient temperature reading in centidegrees Celsius.
Temperature Differential: Includes the airspeed sensor's temperature reading in centidegrees
Celsius.

ArduSub Exception

In ArduSub, this message is repurposed to send water temperature data from the AP_TemperatureSensor
library if enabled. The pressure fields are set to 0.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
press_abs : Absolute pressure (hectopascal).
press_diff : Differential pressure 1 (hectopascal).
temperature : Absolute pressure temperature (centidegrees Celsius).
temperature_press_diff : Differential pressure temperature (centidegrees Celsius).

Practical Use Cases

1. Redundancy Checks:

Scenario: A pilot receives a "Bad Baro Health" warning.
Action: The GCS graphs SCALED_PRESSURE and SCALED_PRESSURE3 side-by-side. If
SCALED_PRESSURE is flatlining but SCALED_PRESSURE3 is responding to altitude changes, it
confirms the primary sensor has failed.

2. Water Temperature Monitoring:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 98 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2364
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-pressure.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Scenario: An ROV is diving in deep water.
Action: The operator monitors the temperature field of SCALED_PRESSURE3 to track the
external water temperature.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2364: Message dispatcher.
libraries/GCS_MAVLink/GCS_Common.cpp:2308: Shared logic for populating pressure instances.
ArduSub/GCS_Mavlink.cpp:105: ArduSub override.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 99 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2364
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2308
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduSub/GCS_Mavlink.cpp#L105

AP_ADC (ID 153) SUPPORTED (LIMITED)

Summary

The AP_ADC message reports raw values from the Analog-to-Digital Converter (ADC). Currently, it is only
implemented in the ESP32 HAL for debugging purposes.

Status

Supported (Limited)

Directionality

TX (Transmit): ESP32 Boards Only
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is located in AP_HAL_ESP32::AnalogIn within
libraries/AP_HAL_ESP32/AnalogIn.cpp:377.

Usage

It sends the raw count of the first 6 ADC channels.
This appears to be a board-specific debug feature and is not generally broadcast by STM32 or other
platforms.

Data Fields

adc1 : ADC output 1.
adc2 : ADC output 2.
adc3 : ADC output 3.
adc4 : ADC output 4.
adc5 : ADC output 5.
adc6 : ADC output 6.

Practical Use Cases

1. Hardware Debugging (ESP32):

Scenario: A developer is porting ArduPilot to a new ESP32 flight controller.
Action: They monitor AP_ADC to verify that the analog pins (Current, Voltage, RSSI) are
mapping correctly to the expected ADC channels.

Key Codebase Locations

libraries/AP_HAL_ESP32/AnalogIn.cpp:377: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 100 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_HAL_ESP32/AnalogIn.cpp#L377
https://mavlinkhud.com/field-manual/mavlink-interface/debug.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_HAL_ESP32/AnalogIn.cpp#L377

VIBRATION (ID 241) SUPPORTED

Summary

The VIBRATION message provides real-time metrics on the mechanical noise being experienced by the
flight controller's accelerometers. It reports vibration levels in the X, Y, and Z axes and tracks "Clipping"
events (when a vibration is so intense that it exceeds the sensor's maximum range). This message is the
primary diagnostic tool for identifying motor imbalances, damaged propellers, or inadequate vibration
isolation.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Mechanical health telemetry)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic resides in GCS_MAVLINK::send_vibration within

libraries/GCS_MAVLink/GCS_Common.cpp:3005.

Data Sourcing

Vibration metrics are calculated in the AP_InertialSensor library using a multi-stage filtering process
(AP_InertialSensor.cpp:2236):

1. Isolation: Raw acceleration is compared against a 5Hz low-pass filtered "floor" to isolate high-
frequency noise from vehicle movement.

2. Smoothing: The square of this difference is smoothed via a 2Hz low-pass filter.
3. Root: The final vibration level is the square root of this smoothed value.
4. Clipping: The clipping_0 , clipping_1 , and clipping_2 fields report the cumulative number of
times each IMU has experienced an acceleration beyond its hard limit (e.g., 16G or 32G).

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
vibration_x : Vibration levels on X-axis.
vibration_y : Vibration levels on Y-axis.
vibration_z : Vibration levels on Z-axis.
clipping_0 : first accelerometer clipping count.
clipping_1 : second accelerometer clipping count.
clipping_2 : third accelerometer clipping count.

Practical Use Cases

1. Propeller Balancing:

Scenario: A pilot installs a new set of carbon fiber propellers.
Action: The GCS graphs vibration_z . If the levels are significantly higher than with the
previous propellers, the pilot knows the new set is unbalanced and needs mechanical
correction.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 101 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3005
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_InertialSensor/AP_InertialSensor.cpp#L2236
https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html

2. Post-Crash Inspection:

Scenario: A drone survived a minor crash, but the pilot wants to ensure no internal damage
occurred.
Action: By checking the clipping fields, the pilot can see if the motors are now producing
extreme vibration spikes that weren't present before, indicating a bent motor shaft or a
cracked frame arm.

3. EKF Health Tuning:

Scenario: A developer is seeing "EKF Lane Switches" in high-speed flight.
Action: By monitoring the VIBRATION levels, the developer can determine if the lane
switches are being caused by mechanical noise "confusing" the state estimator.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3005: Implementation of the MAVLink packet
construction.
libraries/AP_InertialSensor/AP_InertialSensor.cpp:2236: Core vibration calculation logic
(calc_vibration_and_clipping).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 102 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3005
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_InertialSensor/AP_InertialSensor.cpp#L2236

ADSB_VEHICLE (ID 246) SUPPORTED (RX & TX)

Summary

Location and status of a nearby aircraft detected via ADS-B (Automatic Dependent Surveillance-Broadcast).

Status

Supported (RX & TX)

Directionality

TX (Transmit): All Vehicles - Forwards traffic data to GCS.
RX (Receive): All Vehicles - Receives traffic data from onboard ADSB receiver (e.g., PingRX).

Transmission (TX)

ArduPilot streams this message to the GCS if an onboard ADSB receiver detects a target. This allows the
GCS to display traffic without its own ADSB receiver.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Reception (RX)

Handled by AP_ADSB::handle_message . The autopilot uses this data for "ADSB Avoidance" (fencing,
climbing, or holding to avoid collision).

Source: libraries/AP_ADSB/AP_ADSB.cpp

Data Fields

ICAO_address : Unique aircraft ID.
lat : Latitude.
lon : Longitude.
altitude : Altitude.
heading : Heading.
hor_velocity : Horizontal speed.
ver_velocity : Vertical speed.
callsign : Aircraft callsign.
emitter_type : Type (Light, Heavy, Heli, etc.).
tslc : Time since last communication.
flags : Status flags.
squawk : Transponder code.

Practical Use Cases

1. Collision Avoidance:

Scenario: A Cessna flies near the drone.
Action: The onboard PingRX detects the ADS-B Out signal. ArduPilot receives
ADSB_VEHICLE , calculates a collision risk, and automatically initiates a descent to clear the
airspace.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 103 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/object-avoidance/adsb-collision-avoidance.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1112
https://mavlinkhud.com/field-manual/mavlink-interface/collision.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ADSB/AP_ADSB.cpp#L820
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

libraries/AP_ADSB/AP_ADSB.cpp:820: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 104 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

WHEEL_DISTANCE (ID 9000) SUPPORTED (ROVER ONLY)

Summary

The WHEEL_DISTANCE message reports the cumulative distance traveled by each individual wheel, as
measured by wheel encoders. This data is critical for odometry-based navigation in ground vehicles
(Rover).

Status

Supported (Rover Only)

Directionality

TX (Transmit): Autopilot (Reports wheel odometry to GCS/Companion)
RX (Receive): None

Transmission (TX)

The message is generated by the ArduRover firmware's GCS_Mavlink module. It is not currently
implemented for Copter or Plane.

Core Logic

The implementation is in Rover::send_wheel_encoder_distance within Rover/GCS_Mavlink.cpp:406.

It iterates through the active wheel sensors (managed by AP_WheelEncoder) and populates the distance
array.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
count : Number of wheels reported.
distance : Distance traveled per wheel (meters).

Practical Use Cases

1. Dead Reckoning:
Scenario: A rover enters a tunnel and loses GPS.
Action: The Companion Computer uses the WHEEL_DISTANCE updates (differential odometry)
to estimate the vehicle's path and keep it centered in the lane.

2. Slip Detection:

Scenario: A rover is stuck in mud.
Action: The distance values increase rapidly while the IMU detects no acceleration. The
autopilot detects the discrepancy and triggers a "Stuck" failsafe.

Key Codebase Locations

Rover/GCS_Mavlink.cpp:406: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 105 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/odometry.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/Rover/GCS_Mavlink.cpp#L406
https://mavlinkhud.com/field-manual/mavlink-interface/tunnel.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/Rover/GCS_Mavlink.cpp#L406

WATER_DEPTH (ID 11038) SUPPORTED (ROVER ONLY)

Summary

The WATER_DEPTH message reports the depth of the water column beneath a boat, along with the water
temperature and the vehicle's geolocation/orientation. This is essential for hydrographic surveys and
bathymetry.

Status

Supported (Rover Only)

Directionality

TX (Transmit): Autopilot (Reports depth to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the ArduRover firmware's GCS_Mavlink module. It requires the
FRAME_CLASS parameter to be set to "Boat" and a RangeFinder driver to be configured with orientation
PITCH_270 (Down).

Core Logic

The implementation is in GCS_MAVLINK_Rover::send_water_depth within Rover/GCS_Mavlink.cpp:189.

It iterates through all connected RangeFinders. If a sensor is facing down and has valid data, it populates
the message.

Data Fields

time_boot_ms : Timestamp (ms since boot).
id : RangeFinder instance ID.
healthy : Sensor health flag.
lat / lng : Vehicle Latitude/Longitude (degE7).
alt : Vehicle Altitude (m).
roll / pitch / yaw : Vehicle attitude (radians). This allows post-processing software to correct
for "slant range" errors if the boat is rolling in waves.
distance : Depth in meters.
temperature : Water temperature in degC.

Practical Use Cases

1. Bathymetric Mapping:

Scenario: A survey boat follows a grid pattern on a lake.
Action: The GCS records WATER_DEPTH messages. Post-processing software combines
lat , lng , and distance (corrected by roll / pitch) to generate a 3D topographic map
of the lakebed.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 106 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/ekf-failsafes/terrain-estimation.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/Rover/GCS_Mavlink.cpp#L189
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html

Rover/GCS_Mavlink.cpp:189: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 107 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/Rover/GCS_Mavlink.cpp#L189

HYGROMETER_SENSOR (ID 12920) SUPPORTED (PLANE ONLY)

Summary

The HYGROMETER_SENSOR message reports the ambient temperature and relative humidity measured by an
onboard sensor. In ArduPilot, this is typically sourced from high-precision airspeed sensors (like the
Sensirion SDP3x series) that include integrated hygrometers.

Status

Supported (Plane Only)

Directionality

TX (Transmit): Autopilot (Reports environmental data to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the ArduPlane firmware's GCS_Mavlink module. It iterates through the
configured Airspeed sensors and checks if they provide hygrometer data.

Core Logic

The implementation is in GCS_MAVLINK_Plane::send_hygrometer within ArduPlane/GCS_Mavlink.cpp:473.

It checks for fresh data (now - last_sample_ms < 2000) before transmitting, ensuring old or stale
readings are not broadcast.

Data Fields

id : Sensor ID.
temperature : Temperature in centi-degrees Celsius (degC * 100).
humidity : Humidity in centi-percent (\% * 100).

Practical Use Cases

1. Icing Detection:

Scenario: A UAV is flying in cold, damp conditions.
Action: The GCS monitors temperature and humidity . High humidity near 0°C indicates a
high risk of carburetor icing (for gas engines) or wing icing. The pilot can descend or activate
anti-ice systems.

2. Meteorological Survey:

Scenario: Weather profiling.
Action: The drone performs a vertical ascent. The GCS logs HYGROMETER_SENSOR vs Altitude
to generate a skew-T log-P diagram of the atmosphere.

Key Codebase Locations

ArduPlane/GCS_Mavlink.cpp:473: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 108 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/airspeed-sensors.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L473
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L473

CONTROL

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 109 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

RC_CHANNELS_RAW (ID 35) LEGACY / SUPPORTED

Summary

The RC_CHANNELS_RAW message provides raw PWM values (in microseconds) for the first 8 channels of the
vehicle's radio receiver. While fully supported for backward compatibility, it is largely considered a legacy
message in ArduPilot, having been superseded by RC_CHANNELS (65) which supports up to 18 channels.

Status

Legacy / Supported (Superseded by ID 65)

Directionality

TX (Transmit): All Vehicles (Reports RC input to GCS/OSD)
RX (Receive): None (Use RC_CHANNELS_OVERRIDE for GCS-based RC input)

Transmission (TX)

The transmission logic is in GCS_MAVLINK::send_rc_channels_raw within

libraries/GCS_MAVLink/GCS_Common.cpp:2117.

Data Sourcing

RC System: Data is retrieved via rc().get_radio_in(values, 8) .
Format: Raw PWM values (e.g., 1100 to 1900) for channels 1 through 8.
RSSI: The message includes a rssi field (0-255), representing the signal strength of the RC link.

Constraints

Channel Limit: This message is strictly limited to 8 channels.
MAVLink Versioning: ArduPilot primarily uses this message for MAVLink 1.0 compatibility. On
modern MAVLink 2.0 links, RC_CHANNELS (65) is the preferred method for streaming all 16+
channels.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
port : Servo output port (set of 8 outputs = 1 port). Flight stacks running on Pixhawk should use: 0

= Main, 1 = Aux.
chan1_raw : RC channel 1 value.
chan2_raw : RC channel 2 value.
chan3_raw : RC channel 3 value.
chan4_raw : RC channel 4 value.
chan5_raw : RC channel 5 value.
chan6_raw : RC channel 6 value.
chan7_raw : RC channel 7 value.
chan8_raw : RC channel 8 value.
rssi : Receive signal strength indicator in device-dependent units/scale. Values: [0-254], 255:
invalid/unknown.

Practical Use Cases

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 110 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels-override.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2117
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html

1. Radio Calibration:

Scenario: A user is setting up a new transmitter and needs to define the "Min" and "Max"
stick positions.
Action: Mission Planner monitors RC_CHANNELS_RAW while the user moves the sticks,
recording the extreme PWM values for each channel.

2. Legacy OSD Display:

Scenario: A pilot is using an old "MinimOSD" that only supports MAVLink 1.0.
Action: The OSD reads RC_CHANNELS_RAW to show a stick-position overlay or RSSI indicator
on the video feed.

3. Link Health Monitoring:

Scenario: A developer wants to verify that their ELRS or Crossfire receiver is talking to the
flight controller correctly.
Action: By checking for fluctuating PWM values in RC_CHANNELS_RAW in the GCS "Status"
tab, the developer can confirm the digital link is alive.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2117: Implementation of the send function.
libraries/RC_Channel/RC_Channels.cpp: Source of raw PWM input data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 111 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/build-guide/radio-control-link.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2117
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/RC_Channel/RC_Channels.cpp

SERVO_OUTPUT_RAW (ID 36) SUPPORTED

Summary

The SERVO_OUTPUT_RAW message provides the actual PWM values (in microseconds) being sent to the
vehicle's actuators (motors and servos). This represents the output of the flight controller's mixer logic and
is crucial for verifying that the autopilot is commanding the hardware as expected.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports actuator state to GCS)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is implemented in GCS_MAVLINK::send_servo_output_raw within

libraries/GCS_MAVLink/GCS_Common.cpp:3292.

Data Sourcing

Hardware Read: PWM values are read directly from the hardware abstraction layer via hal.rcout-
>read() .
Filtering: ArduPilot uses SRV_Channels::get_output_channel_mask(SRV_Channel::k_GPIO) to
identify and exclude any pins currently configured as GPIOs, ensuring only actuator signals are
reported.
Extended Channel Support: While a single MAVLink SERVO_OUTPUT_RAW packet supports 16
channels, ArduPilot supports up to 32 outputs. It handles this by sending two packets:

Port 0: Channels 1-16.
Port 1: Channels 17-32.

Scheduling

Sent as part of the MSG_SERVO_OUTPUT_RAW stream.
Triggered in GCS_Common.cpp:6245 within the try_send_message loop.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
port : Servo output port (set of 8 outputs = 1 port). Flight stacks running on Pixhawk should use: 0

= Main, 1 = Aux.
servo1_raw : Servo output 1 value.
servo2_raw : Servo output 2 value.
servo3_raw : Servo output 3 value.
servo4_raw : Servo output 4 value.
servo5_raw : Servo output 5 value.
servo6_raw : Servo output 6 value.
servo7_raw : Servo output 7 value.
servo8_raw : Servo output 8 value.
servo9_raw : Servo output 9 value.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 112 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3292
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html

servo10_raw : Servo output 10 value.
servo11_raw : Servo output 11 value.
servo12_raw : Servo output 12 value.
servo13_raw : Servo output 13 value.
servo14_raw : Servo output 14 value.
servo15_raw : Servo output 15 value.
servo16_raw : Servo output 16 value.

Practical Use Cases

1. Mixer Verification:
Scenario: A builder has configured a complex V-Tail plane and wants to ensure the tail servos
move correctly in response to elevator and rudder inputs.
Action: The builder observes SERVO_OUTPUT_RAW in the GCS while moving the sticks to verify
the mixer output without propellers attached.

2. Motor Saturation Check:
Scenario: A heavy-lift Octocopter is struggling to maintain altitude.
Action: The pilot checks the servo_raw values. If multiple motors are consistently at 2000
(Max PWM), it indicates the vehicle is underpowered or overloaded.

3. Actuator Health Monitoring:

Scenario: A servo starts drawing excessive current or becomes jittery.
Action: Mission Planner graphs the output values. If the output is steady but the vehicle is
unstable, it points to a mechanical failure in the actuator itself.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3292: Implementation of send_servo_output_raw .
libraries/GCS_MAVLink/GCS_Common.cpp:6245: Scheduler logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 113 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3292
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6245

NAV_CONTROLLER_OUTPUT (ID 62) SUPPORTED

Summary

The NAV_CONTROLLER_OUTPUT message provides the output of the vehicle's navigation controllers and its
progress toward the current waypoint. It is a critical telemetry packet for the Ground Control Station's (GCS)
HUD, as it provides "Desired" versus "Actual" navigation data, often visualized as a "Flight Director" or
heading bug.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports navigation state)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is vehicle-specific, as each vehicle type (Plane, Copter, Rover) has unique
navigation requirements.

ArduPlane Logic

Implemented in ArduPlane/GCS_Mavlink.cpp:201.

nav_roll / nav_pitch : Sourced from the plane's internal navigation target angles (nav_roll_cd ,
nav_pitch_cd).
wp_dist : Calculated distance to the active waypoint in meters.
alt_error : Vertical distance from the target altitude in meters.
aspd_error : Difference between target airspeed and current filtered airspeed (multiplied by 100).

ArduCopter Logic

Implemented in ArduCopter/GCS_Mavlink.cpp:206.

nav_bearing : The bearing required to reach the next waypoint.
target_bearing : The heading the vehicle is currently trying to maintain.
xtrack_error : The cross-track error (perpendicular distance from the path) in meters.

Data Fields

nav_roll : Current desired roll in degrees.
nav_pitch : Current desired pitch in degrees.
nav_bearing : Current desired heading in degrees.
target_bearing : Bearing to current waypoint/target in degrees.
wp_dist : Distance to active waypoint in meters.
alt_error : Current altitude error in meters.
aspd_error : Current airspeed error in meters/second.
xtrack_error : Current crosstrack error on x-y plane in meters.

Practical Use Cases

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 114 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L201
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L206

1. Flight Director HUD:

Scenario: A pilot is flying a fixed-wing plane in AUTO mode.
Action: The GCS HUD displays a small circle (the "Flight Director") indicating the nav_roll
and nav_pitch commanded by the autopilot. The pilot can see exactly where the drone
wants to go compared to where it is currently pointing.

2. Navigation Health Monitoring:

Scenario: A drone is fighting high crosswinds.
Action: The pilot monitors xtrack_error . If the error keeps increasing despite the drone
leaning into the wind, it indicates the wind speed exceeds the drone's tilt limits.

3. Approach Visualization:

Scenario: A Rover is following a path through a series of narrow gates.
Action: The GCS uses wp_dist to show a countdown timer or distance bar to the next gate,
helping the operator anticipate turns.

Key Codebase Locations

ArduPlane/GCS_Mavlink.cpp:201: Plane-specific navigation output.
ArduCopter/GCS_Mavlink.cpp:206: Copter-specific navigation output.
Rover/GCS_Mavlink.cpp:103: Rover-specific navigation output.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 115 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L201
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L206
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/Rover/GCS_Mavlink.cpp#L103

RC_CHANNELS (ID 65) SUPPORTED / RECOMMENDED

Summary

The RC_CHANNELS message is the modern standard for streaming the vehicle's radio control input to a
Ground Control Station (GCS). It supports up to 18 channels of data, providing high-resolution PWM values
and a link quality indicator (RSSI). This message is used by GCS software for radio calibration and real-time
stick visualization.

Status

Supported / Recommended

Directionality

TX (Transmit): All Vehicles (Reports RC input to GCS/OSD)
RX (Receive): None (Use RC_CHANNELS_OVERRIDE or RADIO_RC_CHANNELS for input)

Transmission (TX)

The transmission logic is in GCS_MAVLINK::send_rc_channels within

libraries/GCS_MAVLink/GCS_Common.cpp:2081.

Data Sourcing

RC System: Values are retrieved from the RC_Channels singleton using get_radio_in() .
Channel Count: While the MAVLink message supports 18 channels, ArduPilot typically supports up
to 16 channels (NUM_RC_CHANNELS), which are mapped to the first 16 fields of the message.

RSSI: Sourced from the receiver driver (e.g., CRSF, ELRS, SBUS) and mapped to the - range.
Timestamp: Uses AP_HAL::millis() since boot.

Stream Configuration

Sent as part of the MSG_RC_CHANNELS stream.
This message is active on modern MAVLink 2.0 links and is the preferred way to monitor full-range
radio inputs (e.g., auxiliary switches, camera dials).

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
chancount : Total number of RC channels being received.
chan1_raw : RC channel 1 value.
chan2_raw : RC channel 2 value.
chan3_raw : RC channel 3 value.
chan4_raw : RC channel 4 value.
chan5_raw : RC channel 5 value.
chan6_raw : RC channel 6 value.
chan7_raw : RC channel 7 value.
chan8_raw : RC channel 8 value.
chan9_raw : RC channel 9 value.
chan10_raw : RC channel 10 value.
chan11_raw : RC channel 11 value.
chan12_raw : RC channel 12 value.

0 255

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 116 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels-override.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2081
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/build-guide/radio-control-link.html

chan13_raw : RC channel 13 value.
chan14_raw : RC channel 14 value.
chan15_raw : RC channel 15 value.
chan16_raw : RC channel 16 value.
chan17_raw : RC channel 17 value.
chan18_raw : RC channel 18 value.
rssi : Receive signal strength indicator in device-dependent units/scale. Values: [0-254], 255:
invalid/unknown.

Practical Use Cases

1. Full System Calibration:

Scenario: A user is configuring a complex cinema drone with 12 auxiliary switches for camera
tilt, zoom, and mode selection.
Action: Mission Planner uses RC_CHANNELS to show the movement of all 12 channels
simultaneously in the "Mandatory Hardware" setup screen.

2. Telemetry-based Stick Display:

Scenario: A pilot wants to record their stick movements for a YouTube tutorial.
Action: An OSD or GCS records the RC_CHANNELS stream, allowing the pilot to overlay a
"Stick Cam" on the final video using only telemetry logs.

3. Radio Link Health (RSSI):
Scenario: A pilot is flying a long-distance mission.
Action: The GCS HUD displays the rssi field as a percentage. If the value drops
significantly, the pilot knows they are approaching the limit of their radio range.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2081: Implementation of the send function.
libraries/RC_Channel/RC_Channel.h:14: Defines NUM_RC_CHANNELS .

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 117 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2081
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/RC_Channel/RC_Channel.h#L14

RC_CHANNELS_OVERRIDE (ID 70) SUPPORTED

Summary

The RC_CHANNELS_OVERRIDE message allows a Ground Control Station (GCS) to emulate a physical radio
transmitter. By sending this message, a GCS can take direct control of the vehicle's sticks and switches,
bypassing the physical RC receiver. This is the primary mechanism for flying drones using USB Joysticks,
Gamepads, or automated ground-based control logic.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Enables GCS control)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_rc_channels_override in

libraries/GCS_MAVLink/GCS_Common.cpp:3994.

Application Logic

1. Security: ArduPilot only accepts overrides from the System ID configured as "My GCS"
(SYSID_MYGCS).

2. Channel Handling:

Value 1000-2000: Sets the raw PWM value for that channel.
Value 0 or 65535 (UINT16_MAX): "Ignore". The current override for this channel is
maintained, or it remains on physical RC.
Value 65534: "Release". Forces this specific channel to revert to the physical radio input.

3. Persistence: Overrides are applied to the RC_Channels library and remain active until a timeout
occurs or they are explicitly released.

Timeout and Failsafe

ArduPilot implements a safety watchdog for overrides in RC_Channel::has_override()

(libraries/RC_Channel/RC_Channel.cpp:510).

Heartbeat: If no new RC_CHANNELS_OVERRIDE message is received within the time defined by the
RC_OVERRIDE_TIME parameter (default 3 seconds), the autopilot automatically releases all
overrides.
Failsafe: If no physical RC receiver is present and the GCS override times out, the vehicle triggers an
RC Failsafe (typically RTL or Land).

Data Fields

target_system : System ID.
target_component : Component ID.
chan1_raw : RC channel 1 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan2_raw : RC channel 2 value, in microseconds. A value of UINT16_MAX means to ignore this
field.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 118 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3994
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-signing-security.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/RC_Channel/RC_Channel.cpp#L510
https://mavlinkhud.com/field-manual/mavlink-interface/heartbeat.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html

chan3_raw : RC channel 3 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan4_raw : RC channel 4 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan5_raw : RC channel 5 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan6_raw : RC channel 6 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan7_raw : RC channel 7 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan8_raw : RC channel 8 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan9_raw : RC channel 9 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan10_raw : RC channel 10 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan11_raw : RC channel 11 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan12_raw : RC channel 12 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan13_raw : RC channel 13 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan14_raw : RC channel 14 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan15_raw : RC channel 15 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan16_raw : RC channel 16 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan17_raw : RC channel 17 value, in microseconds. A value of UINT16_MAX means to ignore this
field.
chan18_raw : RC channel 18 value, in microseconds. A value of UINT16_MAX means to ignore this
field.

Practical Use Cases

1. Joystick Flying:
Scenario: A pilot wants to fly a drone using an Xbox controller connected to their laptop.
Action: Mission Planner reads the controller inputs and streams RC_CHANNELS_OVERRIDE
messages at 10Hz-25Hz to the drone.

2. GCS-Triggered Actions:

Scenario: A search-and-rescue team uses a button on their GCS dashboard to "Drop
Payload".
Action: The GCS sends a single RC_CHANNELS_OVERRIDE packet for Channel 8 with a value of
2000 to trigger the gripper.

3. Automated Landing Logic:

Scenario: An external vision system is performing a precision landing on a moving platform.
Action: The vision system sends micro-adjustments to the roll/pitch channels via overrides to
center the drone over the target.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3994: Entry point for override handling.
libraries/RC_Channel/RC_Channel.cpp:510: Implementation of the timeout/failsafe logic.
libraries/RC_Channel/RC_Channel.h: Defines the override state storage.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 119 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3994
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/RC_Channel/RC_Channel.cpp#L510
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/RC_Channel/RC_Channel.h

COMMAND_LONG (ID 76) SUPPORTED (CRITICAL)

Summary

The COMMAND_LONG message is the most versatile and critical control packet in the MAVLink protocol. It is
used to trigger one-off actions or transition the vehicle into complex states. Commands range from basic
operations like Arming and Disarming to advanced functions like initiating a Compass Calibration or
triggering a camera shutter. ArduPilot processes these by mapping the message to an internal MAV_CMD

dispatch system.

Status

Supported (Critical)

Directionality

TX (Transmit): All Vehicles (Used to control external components like Gimbals/Cameras)
RX (Receive): All Vehicles (Main entry point for GCS-initiated actions)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_command_long in

libraries/GCS_MAVLink/GCS_Common.cpp:5176.

Execution Flow

1. Scripting Override: If a Lua script has registered for a specific command (e.g., a custom payload
trigger), ArduPilot's C++ handler yields to the script.

2. Unification: ArduPilot converts COMMAND_LONG (float params) into an internal COMMAND_INT (integer
params) format via try_command_long_as_command_int (GCS_Common.cpp:5125) to ensure
consistent processing across both message types.

3. Dispatch: The command is routed to handle_command_int_packet . Vehicle-specific logic (e.g.,
ArduCopter/GCS_Mavlink.cpp:758) first attempts to handle vehicle-specific commands (like
TAKEOFF or LAND). If unhandled, it falls back to the common handler in GCS_MAVLINK .

4. Acknowledgement: Every COMMAND_LONG must be acknowledged. ArduPilot sends a COMMAND_ACK
(77) back to the GCS with the result of the operation.

Transmission (TX)

ArduPilot acts as a controller for peripheral devices using COMMAND_LONG .

Gimbal Control: ArduPilot sends MAV_CMD_DO_MOUNT_CONTROL to move a MAVLink-enabled gimbal.
Camera Integration: It sends MAV_CMD_DO_DIGICAM_CONTROL to trigger photo capture on external
MAVLink cameras.

Data Fields

target_system : System which should execute the command.
target_component : Component which should execute the command, 0 for all components.
command : Command ID (MAV_CMD).
confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for
kill command).
param1 : Parameter 1 (for the specific command).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 120 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5176
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/command-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5125
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L758
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://mavlinkhud.com/field-manual/mavlink-interface/command-ack.html
https://mavlinkhud.com/field-manual/mavlink-interface/gimbal-control.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html

param2 : Parameter 2 (for the specific command).
param3 : Parameter 3 (for the specific command).
param4 : Parameter 4 (for the specific command).
param5 : Parameter 5 (for the specific command).
param6 : Parameter 6 (for the specific command).
param7 : Parameter 7 (for the specific command).

Practical Use Cases

1. Arming the Vehicle:

Scenario: A pilot is ready for takeoff and clicks "Arm" in the GCS.
Action: The GCS sends COMMAND_LONG with command = MAV_CMD_COMPONENT_ARM_DISARM
(400) and param1 = 1 . ArduPilot verifies safety checks and arms the motors.

2. Triggering a Reboot:

Scenario: A user has updated a critical parameter that requires a power cycle.
Action: The GCS sends COMMAND_LONG with command =
MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN (246) . ArduPilot saves logs and restarts the MCU.

3. Emergency Return-to-Launch:

Scenario: The pilot loses orientation and needs the drone to come back.
Action: Clicking the "RTL" button sends COMMAND_LONG with command =
MAV_CMD_NAV_RETURN_TO_LAUNCH (20) .

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5176: Main command entry point.
libraries/GCS_MAVLink/GCS_Common.cpp:5415: Common MAV_CMD dispatch switch.
ArduCopter/GCS_Mavlink.cpp:758: Copter-specific command overrides.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 121 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5176
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5415
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L758

COMMAND_ACK (ID 77) SUPPORTED (CRITICAL)

Summary

The COMMAND_ACK message is the response to a COMMAND_LONG or COMMAND_INT . It informs the sender
whether the requested command was accepted, denied, or if it failed during execution. For long-running
tasks, it can also provide progress updates. This message is critical for any Ground Control Station to
provide reliable feedback to the user after they click a button or send a command.

Status

Supported (Critical)

Directionality

TX (Transmit): All Vehicles (Confirming results to GCS)
RX (Receive): Specific Subsystems (Receiving ACKs from external components like Gimbals)

Transmission (TX)

Transmission happens automatically after a command is processed by

GCS_MAVLINK::handle_command_long or handle_command_int .

Result Types

ArduPilot uses the following standard MAV_RESULT values:

MAV_RESULT_ACCEPTED (0): Command was valid and has been executed (or started).
MAV_RESULT_TEMPORARILY_REJECTED (1): Command is valid but cannot be executed now (e.g., trying
to Arm while the vehicle is already armed).
MAV_RESULT_DENIED (2): Command is invalid or the vehicle is in a state that prohibits it (e.g., Takeoff
while disarmed).
MAV_RESULT_UNSUPPORTED (3): The requested MAV_CMD is not implemented in ArduPilot.
MAV_RESULT_FAILED (4): The command was accepted but failed to complete (e.g., a motor failed to
spin up during an arming attempt).
MAV_RESULT_IN_PROGRESS (5): The command is being processed. ArduPilot may send subsequent
ACKs with a progress value (0-100\%).

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_command_ack in

libraries/GCS_MAVLink/GCS_Common.cpp:3978.

Usage

ArduPilot listens for ACKs when it acts as a controller for other MAVLink devices.

Accel Calibration: Used in libraries/AP_AccelCal/AP_AccelCal.cpp to verify that external sensors
have acknowledged calibration steps.
Gimbal Control: ArduPilot verifies that an external MAVLink gimbal has accepted its orientation
commands.

Data Fields

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 122 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/command-long.html
https://mavlinkhud.com/field-manual/mavlink-interface/command-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3978
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AccelCal/AP_AccelCal.cpp
https://mavlinkhud.com/field-manual/mavlink-interface/gimbal-control.html

command : Command ID (MAV_CMD).
result : Result code (MAV_RESULT).
progress : Progress (0 to 100, or 255 if not supported).
result_param2 : Additional parameter for result (optional).
target_system : System ID of the target.
target_component : Component ID of the target.

Practical Use Cases

1. GCS UI Feedback:

Scenario: A user clicks "Arm".
Action: The GCS displays "Arming..." and waits for the COMMAND_ACK . If it receives
ACCEPTED , the UI turns Red (Armed). If it receives TEMPORARILY_REJECTED , the GCS shows
a popup: "Pre-arm checks failed".

2. Automated Scripts:

Scenario: A Python script is performing an automated test of the camera trigger.
Action: The script sends MAV_CMD_DO_DIGICAM_CONTROL and blocks until it receives a
COMMAND_ACK . This ensures the script doesn't proceed faster than the hardware can
respond.

3. Calibration Progress:

Scenario: A user is performing a Compass Calibration.
Action: ArduPilot sends COMMAND_ACK with MAV_RESULT_IN_PROGRESS and the progress
field updated (e.g., 10\%, 20\%...) as the user rotates the vehicle.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3978: Reception handler.
libraries/GCS_MAVLink/GCS_Common.cpp:5200: Typical location where
mavlink_msg_command_ack_send is called after a command is processed.
libraries/AP_AccelCal/AP_AccelCal.cpp: Example of RX handling.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 123 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-trigger.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3978
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5200
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AccelCal/AP_AccelCal.cpp

ATTITUDE_TARGET (ID 83) SUPPORTED

Summary

The ATTITUDE_TARGET message provides the "Desired" orientation of the vehicle, as commanded by the
flight controller's navigation and position loops. By comparing this message against the actual orientation
(reported in ATTITUDE or ATTITUDE_QUATERNION), Ground Control Stations can visualize how well the
vehicle is tracking its commanded path and tuning parameters.

Status

Supported

Directionality

TX (Transmit): Copter, Plane (QuadPlane only), Blimp (Reports desired targets)
RX (Receive): None (Use SET_ATTITUDE_TARGET (82) for external input)

Transmission (TX)

The transmission logic is implemented in vehicle-specific GCS classes.

Copter Implementation

Located in ArduCopter/GCS_Mavlink.cpp:86.

Data Source: The AC_AttitudeControl library provides the internal targets.
Format:

q : The target orientation as a unit quaternion.
body_roll_rate , body_pitch_rate , body_yaw_rate : The target angular velocities in

.
thrust : The normalized target thrust (0 to 1).

Plane Implementation

Located in ArduPlane/GCS_Mavlink.cpp:160.

This message is typically only sent when the plane is in a VTOL (Vertical Take-Off and Landing)
mode (QuadPlane), where the attitude controller's targets are relevant for hover stability.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
type_mask : Bitmap to indicate which dimensions should be ignored by the vehicle.
q : Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0).
body_roll_rate : Body roll rate (rad/s).
body_pitch_rate : Body pitch rate (rad/s).
body_yaw_rate : Body yaw rate (rad/s).
thrust : Collective thrust, normalized to 0 .. 1 (-1 .. 1 for vehicles capable of reverse trust).

Practical Use Cases

1. PID Tuning Visualization:

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 124 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/mavlink-interface/set-attitude-target.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L86
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L160
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/advanced-tuning/autotune-logic.html

Scenario: A user is performing manual "AutoTune" and wants to see if the drone is responsive
enough.
Action: The GCS graphs "Actual Roll" vs. "Target Roll" (from ATTITUDE_TARGET). If the actual
roll lags significantly behind the target, the user knows to increase the P-gain.

2. Navigation Health Monitoring:

Scenario: A drone is flying in extremely high winds.
Action: The pilot notices the "Desired Tilt" (Target) is at 30 degrees, but the drone is only
tilting 20 degrees. This indicates a physical limitation or motor saturation.

3. Simulation Verification:

Scenario: A developer is testing a new navigation algorithm in SITL.
Action: By logging ATTITUDE_TARGET , the developer can verify that the algorithm is
generating smooth, mathematically sound setpoints before they are passed to the motors.

Key Codebase Locations

ArduCopter/GCS_Mavlink.cpp:86: Copter transmission logic.
ArduPlane/GCS_Mavlink.cpp:160: Plane transmission logic.
libraries/AC_AttitudeControl/AC_AttitudeControl.h: Internal source of target orientation.

MISSION

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 125 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L86
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L160
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_AttitudeControl/AC_AttitudeControl.h

MISSION_ITEM (ID 39) LEGACY / SUPPORTED

Summary

The MISSION_ITEM message is the legacy mechanism for uploading and downloading autonomous mission
waypoints using floating-point coordinates. While fully supported for backward compatibility, it is largely
superseded by MISSION_ITEM_INT (73), which uses integer coordinates to avoid precision loss over long
distances. ArduPilot unifies both formats internally to high-precision integer representation.

Status

Legacy / Supported (Superseded by ID 73)

Directionality

TX (Transmit): All Vehicles (Downloading mission to GCS)
RX (Receive): All Vehicles (Uploading mission from GCS)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_mission_item in

libraries/GCS_MAVLink/GCS_Common.cpp:915.

Conversion Logic

Upon receiving a MISSION_ITEM packet, ArduPilot immediately converts it to the integer format using
AP_Mission::convert_MISSION_ITEM_to_MISSION_ITEM_INT in libraries/AP_Mission/AP_Mission.cpp:1498.
This ensures that the mission is stored with the highest possible fidelity in the vehicle's EEPROM/Flash.

Transmission (TX)

During a mission download, ArduPilot will send MISSION_ITEM messages if the GCS requested them via a
MISSION_REQUEST (40).

Logic: The MissionItemProtocol state machine retrieves the command from AP_Mission ,
converts it to float-scale, and sends the packet.

Data Fields

target_system : System ID.
target_component : Component ID.
seq : Sequence.
frame : The coordinate system of the waypoint (MAV_FRAME).
command : The scheduled action for the waypoint (MAV_CMD).
current : false:0, true:1.
autocontinue : autocontinue to next wp.
param1 : PARAM1, see MAV_CMD enum.
param2 : PARAM2, see MAV_CMD enum.
param3 : PARAM3, see MAV_CMD enum.
param4 : PARAM4, see MAV_CMD enum.
x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7.
y : PARAM6 / local: y position in meters * 1e4, global: longitude in degrees * 10^7.
z : PARAM7 / local: z position: altitude in meters (relative or absolute, depending on frame).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 126 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L915
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L1498
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Practical Use Cases

1. Legacy Script Support:

Scenario: A researcher has a legacy DroneKit script that defines waypoints using floats.
Action: ArduPilot accepts the MISSION_ITEM messages and transparently converts them for
the internal flight controller.

2. Simple GCS Implementation:

Scenario: A developer is building a minimal GCS and finds float math easier to implement than
1E7 integer scaling.
Action: The developer uses MISSION_ITEM to send simple waypoint coordinates.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:915: Entry point for mission item handling.
libraries/AP_Mission/AP_Mission.cpp:1498: Unification of Float and Integer coordinates.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 127 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L915
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L1498

MISSION_SET_CURRENT (ID 41) SUPPORTED

Summary

The MISSION_SET_CURRENT message allows a Ground Control Station (GCS) to manually override the
vehicle's progress through an autonomous mission. It can be used to jump ahead to a specific waypoint,
restart the mission from the beginning, or skip a section of the flight path.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Manually sets mission index)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_mission_set_current in

libraries/GCS_MAVLink/GCS_Common.cpp:710.

Processing Logic

1. Index Update: It calls AP_Mission::set_current_cmd(index) .
2. Execution Jump:

If the mission is active, it calls advance_current_nav_cmd(index) , which forces the flight
controller to stop its current navigation goal and immediately track toward the new waypoint.
If the mission is stopped/disarmed, it primes the mission engine to resume from that index
upon the next mission start.

3. Special Markers: It supports jumping to the MAV_CMD_DO_LAND_START marker, which is commonly
used during abort procedures to find the start of the landing sequence.

4. Confirmation: ArduPilot immediately responds with a MISSION_CURRENT (42) message echoing the
new index.

Data Fields

target_system : System ID.
target_component : Component ID.
seq : Sequence.

Practical Use Cases

1. Waypoint Skipping:

Scenario: A pilot is flying a survey mission and notices a localized cloud over waypoint 5.
Action: The pilot uses the "Set Current Waypoint" feature in the GCS to jump to waypoint 6,
skipping the obscured area.

2. Mission Restart:

Scenario: A battery fail-safe triggered an early return. After swapping batteries, the pilot
wants to start the mission from waypoint 1 again.
Action: The GCS sends MISSION_SET_CURRENT with index 0 .

3. Emergency Landing Search:
Scenario: A fixed-wing plane needs to land immediately due to high winds.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 128 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L710
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-current.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html

Action: The GCS triggers a jump to the "Land Start" index, allowing the plane to follow its pre-
planned landing approach.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:710: Entry point for setting the current item.
libraries/AP_Mission/AP_Mission.cpp:586: Core mission state management for index changes.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 129 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L710
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L586

MISSION_CURRENT (ID 42) SUPPORTED

Summary

The MISSION_CURRENT message is the vehicle's report of its current progress through the active mission. It
specifies the sequence number (index) of the waypoint or command the vehicle is currently executing.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports current mission index)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission logic is in GCS_MAVLINK::send_mission_current within
libraries/GCS_MAVLink/GCS_Common.cpp:678.

Data Sourcing

Source: The index is retrieved from the AP_Mission library via get_current_nav_index() .
Trigger:

1. Periodic: Sent as part of the MSG_CURRENT_WAYPOINT stream (typically 1Hz).
2. Event-Driven: Sent immediately after a MISSION_SET_CURRENT (41) command is processed.
3. Autonomous: Sent whenever the mission engine automatically advances to the next item in
the list.

Data Fields

seq : Sequence.

Practical Use Cases

1. Mission Progress Visualization:
Scenario: A pilot is watching the drone fly a complex path on a ground station.
Action: The GCS highlights the "active" waypoint on the map based on the index received in
MISSION_CURRENT .

2. Autonomous Event Triggers:

Scenario: A photographer wants to be notified when the drone reaches waypoint 10 to start a
manual video sequence.
Action: An app listens for MISSION_CURRENT and triggers a sound alert on the pilot's phone
when seq == 10 .

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:678: Implementation of send_mission_current .
libraries/AP_Mission/AP_Mission.h: Provides access to the mission state.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 130 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L678
https://mavlinkhud.com/field-manual/mavlink-interface/mission-set-current.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L678
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.h

MISSION_REQUEST_LIST (ID 43) SUPPORTED

Summary

The MISSION_REQUEST_LIST message is the standard way for a Ground Control Station (GCS) to initiate a
mission download. Upon receiving this request, ArduPilot determines the number of stored mission items
and responds with a MISSION_COUNT (44) message.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Triggers mission download handshake)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_mission_request_list in

libraries/GCS_MAVLink/GCS_Common.cpp:607.

Processing Logic

1. Protocol Identification: The message is routed to the appropriate MissionItemProtocol handler
(e.g., Waypoints, Rally points, or Fences).

2. Count Retrieval: ArduPilot queries the AP_Mission library for the total number of items currently
stored in the requested list.

3. Response: It immediately sends a MISSION_COUNT (44) packet back to the requester.

Data Fields

target_system : System ID.
target_component : Component ID.

Practical Use Cases

1. Post-Connect Synchronization:

Scenario: A pilot connects a tablet to a drone that was previously flown.
Action: The tablet sends MISSION_REQUEST_LIST to see if there is an active mission still
stored on the vehicle.

2. Mission Verification:
Scenario: After uploading a new route, the GCS wants to double-check the onboard state.
Action: The GCS requests the list to begin a verification download.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:607: Entry point for list requests.
libraries/GCS_MAVLink/MissionItemProtocol.cpp: Core state machine logic for responding to list
requests.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 131 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-count.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L607
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L607
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol.cpp

MISSION_COUNT (ID 44) SUPPORTED

Summary

The MISSION_COUNT message is a critical handshake packet used at the beginning of both mission uploads
and downloads. It defines how many items are about to be transferred, allowing the receiver to allocate
memory and prepare for the sequence of individual waypoint messages.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Starting a download)
RX (Receive): All Vehicles (Starting an upload)

Transmission (TX)

ArduPilot sends MISSION_COUNT in response to a MISSION_REQUEST_LIST (43). This tells the GCS exactly
how many waypoints are currently stored in the vehicle's memory.

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_mission_count in

libraries/GCS_MAVLink/GCS_Common.cpp:741.

Processing Logic

1. Preparation: The autopilot receives this message from a GCS wanting to upload a new mission.
2. Clearance: ArduPilot calls truncate() on the internal mission storage. This effectively clears
existing items of that type to make room for the new list.

3. Resource Allocation: The mission protocol state machine is initialized to expect the specified
number of items.

4. Handshake Continuation: ArduPilot responds by sending the first MISSION_REQUEST (40) for index
0.

Data Fields

target_system : System ID.
target_component : Component ID.
count : Number of mission items in the sequence.

Practical Use Cases

1. Uploading a Route:

Scenario: A user draws a 10-point circle on a map in Mission Planner and clicks "Write WPs".
Action: Mission Planner sends MISSION_COUNT with value 10 . ArduPilot clears its mission
memory and begins requesting the 10 points.

2. Telemetry Resumption:
Scenario: A link was temporarily lost during a mission download.
Action: The GCS re-sends the count request to re-verify the list size before continuing.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 132 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request-list.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L741
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:741: Entry point for mission count handling.
libraries/GCS_MAVLink/MissionItemProtocol.cpp: Implements the truncate and truncate
logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 133 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L741
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol.cpp

MISSION_CLEAR_ALL (ID 45) SUPPORTED

Summary

The MISSION_CLEAR_ALL message allows a Ground Control Station (GCS) to wipe a specific set of
autonomous instructions from the vehicle's memory. This is typically used to reset the drone to a clean
state before uploading a new mission or to ensure no old geofence boundaries remain active.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Clears stored mission/fence/rally items)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_mission_clear_all in

libraries/GCS_MAVLink/GCS_Common.cpp:763.

Processing Logic

1. Target Selection: The message contains a mission_type field. ArduPilot uses this to determine
whether to clear the Main Mission, the Geo-Fence, or the Rally points.

2. Safety First: Before clearing, ArduPilot cancels any active mission upload sessions to prevent the
system from entering an inconsistent state.

3. Scoped Wipe: Only the requested list is cleared. The rest of the vehicle's configuration (parameters,
calibration data) remains untouched in the EEPROM.

4. Acknowledgement: ArduPilot responds with a MISSION_ACK (47) message. If successful, it returns
MAV_MISSION_ACCEPTED .

Data Fields

target_system : System ID.
target_component : Component ID.
mission_type : Mission type (MAV_MISSION_TYPE).

Practical Use Cases

1. New Mission Prep:
Scenario: A user finishes a survey at Site A and drives to Site B.
Action: The GCS sends MISSION_CLEAR_ALL to remove the Site A waypoints before the user
starts drawing a new flight plan.

2. Fence Removal:

Scenario: A pilot is flying in a restricted area with a temporary geofence. After the restriction
is lifted, they want to fly freely.
Action: The GCS clears the fence type, allowing the drone to fly past the previous boundaries.

3. Automation Cleanup:

Scenario: A custom script is used to generate dynamic missions.
Action: At the end of each flight, the script clears the mission to ensure the drone doesn't
accidentally restart the same route on the next takeoff.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 134 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L763
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-ack.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:763: Entry point for the clear command.
libraries/GCS_MAVLink/MissionItemProtocol.cpp:32: Implements the clearing logic and ACK
generation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 135 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L763
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol.cpp#L32

MISSION_ITEM_REACHED (ID 46) SUPPORTED

Summary

The MISSION_ITEM_REACHED message is an event-driven notification sent by the autopilot to the Ground
Control Station (GCS). It announces that a specific mission item (waypoint, takeoff, landing, or action) has
been successfully completed. This is the primary signal used by GCS software to update progress bars and
provide audio feedback to the pilot (e.g., "Waypoint 5 reached").

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports completion events)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is in GCS::send_mission_item_reached_message within

libraries/GCS_MAVLink/GCS_Common.cpp:2717.

Trigger Logic

This message is not sent periodically. Instead, it is triggered by the mission engine:

1. Verification: The AP_Mission library calls a vehicle-specific verify_command() function (e.g., in
ArduCopter/mode_auto.cpp) at high frequency (10Hz+).

2. Completion: When the vehicle determines it has fulfilled the criteria for the current item (e.g., it is
within the waypoint radius and has finished any required loiter time), verify_command returns
true .

3. Dispatch: Upon completion, the autopilot immediately broadcasts MISSION_ITEM_REACHED with the
index of the finished item.

Scope

Navigation Commands: Sent for waypoints, land, takeoff, and return-to-launch.
DO Commands: Sent for non-movement actions (e.g., MAV_CMD_DO_SET_SERVO), which typically
complete instantly upon execution.

Data Fields

seq : Sequence.

Practical Use Cases

1. GCS Audio Alerts:

Scenario: A pilot is flying a survey mission and isn't looking at the screen.
Action: Mission Planner receives the message and uses Text-to-Speech to announce
"Waypoint 10 reached. Returning home."

2. Automated Data Logging:

Scenario: A researcher wants to log exactly when a drone entered a specific study area.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 136 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2717
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html

Action: An external script listens for MISSION_ITEM_REACHED . When the index matches the
boundary waypoint, it saves a timestamp and GPS coordinate.

3. Companion Computer Actions:
Scenario: A drone is delivering a package.
Action: When the companion computer sees the "Land" waypoint index reached, it triggers
the gripper mechanism to release the payload.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2717: Implementation of the broadcast function.
ArduCopter/mode_auto.cpp: Typical trigger location for Copter missions.
ArduPlane/commands_logic.cpp: Typical trigger location for Plane missions.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 137 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2717
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp

MISSION_ACK (ID 47) SUPPORTED

Summary

The MISSION_ACK message is the terminal handshake packet in the MAVLink mission protocol. It signals
the final result of a multi-message operation, such as uploading a new waypoint list or clearing the mission
memory. Ground Control Stations (GCS) use this message to determine if a "Write" operation was
successful or if an error occurred (e.g., the drone's memory is full).

Status

Supported

Directionality

TX (Transmit): All Vehicles (Confirming result to GCS)
RX (Receive): None (Received but ignored by ArduPilot)

Transmission (TX)

The transmission logic is centered in MissionItemProtocol::send_mission_ack within

libraries/GCS_MAVLink/MissionItemProtocol.cpp:334.

Response Types

ArduPilot uses the type field to communicate specific results:

MAV_MISSION_ACCEPTED (0): The operation was successful (e.g., all waypoints received and saved).
MAV_MISSION_ERROR (1): A generic failure occurred.
MAV_MISSION_UNSUPPORTED (3): The requested mission type or command is not supported.
MAV_MISSION_NO_SPACE (4): The vehicle has run out of EEPROM/Flash storage for mission items.
MAV_MISSION_INVALID (5): One or more parameters in the uploaded mission items are invalid (e.g.,
unrealistic coordinates).
MAV_MISSION_INVALID_SEQUENCE (13): Items were received out of order during an upload.

Reception (RX)

ArduPilot receives MISSION_ACK from the GCS after providing a mission for download.

Handling: The message is decoded in GCS_Common.cpp:4566 , but it is marked as "not used" and
discarded. ArduPilot considers its job done once the last mission item is sent and does not require
verification from the GCS.

Data Fields

target_system : System ID.
target_component : Component ID.
type : Mission result (MAV_MISSION_RESULT).
mission_type : Mission type (MAV_MISSION_TYPE).

Practical Use Cases

1. Ensuring Reliable Uploads:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 138 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol.cpp#L334
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

Scenario: A user uploads 50 waypoints over a weak telemetry link.
Action: The GCS waits for the final MISSION_ACK with type=0 before showing the "Upload
Complete" dialog. If it receives an error, it prompts the user to "Retry".

2. Storage Capacity Warnings:

Scenario: A developer attempts to upload a 2000-point mission to an older flight controller.
Action: ArduPilot sends a MISSION_ACK with MAV_MISSION_NO_SPACE , allowing the GCS to
explain why the full mission wasn't saved.

3. Protocol Verification:
Scenario: A companion computer clears the onboard fence.
Action: The computer listens for the ACK to verify the fence has indeed been deactivated
before proceeding with a flight.

Key Codebase Locations

libraries/GCS_MAVLink/MissionItemProtocol.cpp:334: Core logic for result reporting.
libraries/GCS_MAVLink/GCS_Common.cpp:4566: Dispatcher that discards incoming ACKs.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 139 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol.cpp#L334
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4566

MISSION_ITEM_INT (ID 73) SUPPORTED / RECOMMENDED

Summary

The MISSION_ITEM_INT message is the modern standard for transmitting mission waypoints in MAVLink. It
uses integer values for Latitude and Longitude (scaled by 1E7) to ensure high spatial precision, even on
global scales. This is ArduPilot's preferred message for all mission planning activities.

Status

Supported / Recommended

Directionality

TX (Transmit): All Vehicles (Downloading mission to GCS)
RX (Receive): All Vehicles (Uploading mission from GCS)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_mission_item in

libraries/GCS_MAVLink/GCS_Common.cpp:915.

Internal Storage

Direct Mapping: Since ArduPilot uses integer coordinates internally, MISSION_ITEM_INT messages
are decoded directly into the internal mission representation without the precision loss associated
with float conversions.
Storage: Items are stored in the vehicle's non-volatile memory via the AP_Mission library.

Transmission (TX)

During a mission download, modern Ground Control Stations (like Mission Planner or QGroundControl) will
request items using MISSION_REQUEST_INT (51). ArduPilot responds with MISSION_ITEM_INT packets.

Data Fields

target_system : System ID.
target_component : Component ID.
seq : Sequence.
frame : The coordinate system of the waypoint (MAV_FRAME).
command : The scheduled action for the waypoint (MAV_CMD).
current : false:0, true:1.
autocontinue : autocontinue to next wp.
param1 : PARAM1, see MAV_CMD enum.
param2 : PARAM2, see MAV_CMD enum.
param3 : PARAM3, see MAV_CMD enum.
param4 : PARAM4, see MAV_CMD enum.
x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7.
y : PARAM6 / local: y position in meters * 1e4, global: longitude in degrees * 10^7.
z : PARAM7 / local: z position: altitude in meters (relative or absolute, depending on frame).
mission_type : Mission type (MAV_MISSION_TYPE).

Practical Use Cases

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 140 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L915
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request-int.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

1. Professional Mission Planning:

Scenario: A surveyor is planning an automated grid for a 1cm/pixel orthomosaic map.
Action: The GCS uses MISSION_ITEM_INT to ensure the waypoint coordinates are accurate
to within 1.1cm on the Earth's surface.

2. Long Range Navigation:

Scenario: A fixed-wing drone is flying a 50km out-and-back mission.
Action: Integer coordinates prevent the "coordinate drift" that can occur in floating-point
systems when coordinates have many digits before the decimal point.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:915: Unified handler for float and integer mission
items.
libraries/GCS_MAVLink/MissionItemProtocol_Waypoints.cpp: Implements the waypoint-specific
transfer logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 141 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L915
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol_Waypoints.cpp

TERRAIN_REQUEST (ID 133) SUPPORTED

Summary

The TERRAIN_REQUEST message is part of the ArduPilot Terrain Protocol. It is sent by the vehicle to the
Ground Control Station (GCS) to request digital elevation data (DEM) for a specific geographic area. The
GCS responds by sending TERRAIN_DATA (134) messages containing the requested grid blocks.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Requests map data)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is in AP_Terrain::request_missing within libraries/AP_Terrain/TerrainGCS.cpp:72.

Protocol Logic

1. Grid Management: The AP_Terrain library divides the world into 4x4 grids of terrain heights.
2. Bitmap Check: It maintains a bitmap of which grids it has loaded. If the vehicle is flying towards an
area where data is missing (and not on the SD card), it initiates a request.

3. Masking: The mask field tells the GCS exactly which 4x4 blocks within a larger tile are missing,
optimizing bandwidth.

Data Fields

lat : Latitude of grid (deg * 1E7).
lon : Longitude of grid (deg * 1E7).
grid_spacing : Grid spacing (in meters).
mask : Bitmask of requested 4x4 blocks within the 8x7 grid.

Practical Use Cases

1. Terrain Following:

Scenario: A plane is flying a low-altitude mission over a mountain.
Action: As the plane approaches the mountain, AP_Terrain detects it is missing elevation
data for the upcoming coordinates. It sends TERRAIN_REQUEST to the GCS. The GCS replies
with the data, allowing the plane to climb autonomously to maintain safe ground clearance.

Key Codebase Locations

libraries/AP_Terrain/TerrainGCS.cpp:72: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 142 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/terrain-data.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L72
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L72

TERRAIN_CHECK (ID 135) SUPPORTED

Summary

The TERRAIN_CHECK message is a query used by the Ground Control Station (GCS) to verify if the vehicle
has terrain data available for a specific location. This is often done during mission planning or pre-flight
checks to ensure the drone can safely perform terrain-following operations.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Queries terrain database)

Reception (RX)

Reception is handled by AP_Terrain::handle_terrain_check within

libraries/AP_Terrain/TerrainGCS.cpp:251.

Core Logic

1. Query: The GCS provides a latitude (lat) and longitude (lon).
2. Lookup: ArduPilot checks its internal AP_Terrain database (both RAM cache and SD card).
3. Response: It immediately sends back a TERRAIN_REPORT (136) message containing the terrain
height at that location and the status of pending/loaded grid blocks.

Data Fields

lat : Latitude (deg * 1E7).
lon : Longitude (deg * 1E7).

Practical Use Cases

1. Pre-Arming Safety:
Scenario: A user uploads a mission that requires terrain following.
Action: The GCS sends TERRAIN_CHECK for each waypoint. If the drone replies with
TERRAIN_REPORT indicating missing data, the GCS warns the user or initiates a data upload.

Key Codebase Locations

libraries/AP_Terrain/TerrainGCS.cpp:251: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 143 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/terrain-data.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L251
https://mavlinkhud.com/field-manual/mavlink-interface/terrain-report.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L251

TERRAIN_REPORT (ID 136) SUPPORTED

Summary

The TERRAIN_REPORT message is sent by the vehicle to the Ground Control Station (GCS) to provide the
terrain elevation at a specific coordinate. It is typically sent in response to a TERRAIN_CHECK (135) request
or as part of the vehicle's periodic status stream to indicate terrain database health (loaded/pending
blocks).

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports terrain data)
RX (Receive): None (Ignored)

Transmission (TX)

The transmission logic is in AP_Terrain::send_terrain_report within

libraries/AP_Terrain/TerrainGCS.cpp:221.

Protocol Logic

1. Height Lookup: It queries the internal terrain database for the elevation at the requested lat / lon .
2. Statistics: It calculates the number of pending (requested but not received) and loaded (valid)

4x4 grid blocks in the cache.
3. Current Height: It includes the vehicle's current height above terrain (current_height) if available.

Data Fields

lat : Latitude (deg * 1E7).
lon : Longitude (deg * 1E7).
spacing : Grid spacing in meters (0 if no data available).
terrain_height : Terrain height in meters AMSL.
current_height : Current vehicle height above terrain in meters.
pending : Number of 4x4 terrain blocks waiting to be loaded/received.
loaded : Number of 4x4 terrain blocks currently in memory.

Practical Use Cases

1. Database Visualization:

Scenario: A pilot is preparing for a terrain-following mission.
Action: The GCS displays the loaded count. As the GCS pushes TERRAIN_DATA to the
drone, this number increases, confirming the map is being saved to the SD card.

2. Look-Ahead Safety:
Scenario: The drone is flying towards a hill.
Action: The GCS (or onboard script) sends a TERRAIN_CHECK for a coordinate 500m ahead.
The returned TERRAIN_REPORT shows the hill's altitude, allowing the system to verify
clearance.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 144 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/terrain-check.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L221
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/terrain-data.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

libraries/AP_Terrain/TerrainGCS.cpp:221: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 145 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L221

FENCE_STATUS (ID 162) SUPPORTED

Summary

The FENCE_STATUS message reports the current status of the vehicle's geofence, including whether a
breach has occurred, the type of breach (altitude, boundary), and any active mitigation actions.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports fence status)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by GCS_MAVLINK::send_fence_status within
libraries/GCS_MAVLink/GCS_Fence.cpp:66.

Logic

1. Check: If the fence is disabled, no message is sent.
2. Translate Breaches: The internal AC_Fence breach types are mapped to MAVLink enums

(FENCE_BREACH_MINALT , FENCE_BREACH_MAXALT , FENCE_BREACH_BOUNDARY).
3. Mitigation: Checks AC_Avoid to see if velocity limiting (FENCE_MITIGATE_VEL_LIMIT) is active to
prevent a breach.

Data Fields

breach_status : 0 if currently inside fence, 1 if outside.
breach_count : Number of fence breaches since arming.
breach_type : Type of last breach (FENCE_BREACH_NONE , MINALT , MAXALT , BOUNDARY).
breach_time : Time of last breach (ms since boot).
breach_mitigation : Active mitigation action (FENCE_MITIGATE_NONE , VEL_LIMIT).

Practical Use Cases

1. Pilot Awareness:

Scenario: A pilot is flying near a geofence boundary.
Action: The GCS displays a warning icon when breach_status becomes 1, alerting the pilot
that the vehicle has violated the safety zone.

2. Safety Auditing:

Scenario: Post-flight analysis.
Action: Reviewing the log to see where breach_count incremented helps identify if the
mission plan was too close to restricted airspace.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Fence.cpp:66: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 146 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Fence.cpp#L66
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Fence.cpp#L66

RALLY_POINT (ID 175) SUPPORTED (RX & TX)

Summary

Represents a rally point (safe return location). This message is part of the legacy Rally Point protocol.

Status

Supported (RX & TX)

Directionality

TX (Transmit): All Vehicles - Sends a rally point to the GCS (response to fetch).
RX (Receive): All Vehicles - Receives a new rally point from the GCS (upload).

Description

This message allows a GCS to read or write rally points on the vehicle. While fully supported, ArduPilot 4.6+
issues a deprecation warning when this protocol is used, preferring the Mission Item protocol (using
MAV_CMD_NAV_RALLY_POINT) instead.

Transmission (TX)

Sent in response to RALLY_FETCH_POINT .

Source: libraries/GCS_MAVLink/GCS_Rally.cpp

Reception (RX)

Handled by GCS_MAVLINK::handle_rally_point . Updates the rally point at the specified index in the
storage.

Source: libraries/GCS_MAVLink/GCS_Rally.cpp

Data Fields

target_system : System ID.
target_component : Component ID.
idx : Index of the rally point (0-based).
count : Total number of rally points.
lat : Latitude (int32, deg * 1E7).
lng : Longitude (int32, deg * 1E7).
alt : Altitude (int16, meters).
break_alt : Break altitude (int16, meters) - Alt to descend to before landing.
land_dir : Landing direction (centidegrees).
flags : Configuration flags (e.g., Favorable Wind).

Practical Use Cases

1. Uploading Safe Points:

Scenario: Uploading a set of safe landing zones before a mission.
Action: GCS sends RALLY_POINT messages to populate the list.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 147 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/rally-fetch-point.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Rally.cpp#L86
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Rally.cpp#L26
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Rally.cpp: Implementation.

PAYLOAD

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 148 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

CAMERA_INFORMATION (ID 259) SUPPORTED

Summary

The CAMERA_INFORMATION message provides static metadata about an onboard camera to the Ground
Control Station (GCS). It includes details like the manufacturer, model, focal length, sensor size, and
resolution. This information is critical for survey planning software to calculate the "Ground Sample
Distance" (GSD) and footprint of photos without requiring the user to manually enter camera specifications.

Status

Supported

Directionality

TX (Transmit): All Vehicles (Reports camera capabilities to GCS)
RX (Receive): Specific Backends (Receives info from external MAVLink cameras)

Transmission (TX)

The transmission logic is centered in libraries/AP_Camera/AP_Camera.cpp:577, which delegates to
individual backend implementations.

Data Sourcing

Metadata: Sourced from the AP_Camera backend (AP_Camera_Backend.cpp:224).
Information Included:

vendor_name / model_name : Identifies the hardware (e.g., "Sony", "Alpha 7").
focal_length : The lens focal length in millimeters.
sensor_size_h / sensor_size_v : Dimensions of the image sensor in millimeters.
resolution_h / resolution_v : Total pixel dimensions of the captured images.

Trigger: Sent on request (e.g., via MAV_CMD_REQUEST_MESSAGE).

Reception (RX)

ArduPilot handles this message in the MAVLinkCamV2 backend.

Scenario: A specialized MAVLink-enabled camera (like a Gremsy or SIYI) is connected to the
autopilot.
Action: The camera sends its CAMERA_INFORMATION to the autopilot. ArduPilot's
AP_Camera_MAVLinkCamV2 backend parses this data and stores it, allowing the autopilot to proxy the
information to the main Ground Control Station.

Data Fields

time_boot_ms : Timestamp (time since system boot).
vendor_name : Name of the camera vendor.
model_name : Name of the camera model.
firmware_version : Version of the camera firmware, encoded as: (Dev & 0xff) << 24 | (Patch &

0xff) << 16 | (Minor & 0xff) << 8 | (Major & 0xff).
focal_length : Focal length.
sensor_size_h : Image sensor size horizontal.
sensor_size_v : Image sensor size vertical.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 149 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L577
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L224

resolution_h : Image resolution in pixels horizontal.
resolution_v : Image resolution in pixels vertical.
lens_id : Reserved for a lens ID.
flags : Bitmap of camera capability flags.
cam_definition_version : Camera definition version (iteration).
cam_definition_uri : Camera definition URI (if any, otherwise only basic functions will be
available). HTTP- (http://) or MAVLink FTP- (mavlinkftp://) formatted URI.

Practical Use Cases

1. Automatic Survey Setup:
Scenario: A user connects a new mapping camera to their drone.
Action: Mission Planner receives CAMERA_INFORMATION . It automatically updates the "Survey"
grid calculator with the correct sensor size and focal length, ensuring the overlap and altitude
calculations are mathematically correct for that specific camera.

2. Remote Identity & Inventory:
Scenario: A fleet manager is checking the status of 10 different drones.
Action: The management software queries CAMERA_INFORMATION to verify that each drone is
equipped with the correct payload for the scheduled mission (e.g., Thermal vs. RGB).

3. Lens Calibration verification:

Scenario: A researcher is using a drone for high-precision scientific imaging.
Action: By checking the focal_length field, the researcher can verify that the lens hasn't
been swapped or adjusted since the last calibration.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:577: Common camera message dispatcher.
libraries/AP_Camera/AP_Camera_Backend.cpp:224: Logic for populating the information packet.
libraries/GCS_MAVLink/GCS_Common.cpp:6178: Scheduler integration for camera telemetry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 150 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-ftp.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L577
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L224
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6178

CAMERA_SETTINGS (ID 260) SUPPORTED

Summary

The CAMERA_SETTINGS message reports the current dynamic state of an onboard camera, specifically its
operating mode, zoom level, and focus level. Unlike CAMERA_INFORMATION , which describes static
capabilities, CAMERA_SETTINGS provides real-time feedback to the Ground Control Station (GCS). This
ensures that the pilot's UI accurately reflects the camera's physical state, especially during slow operations
like zooming or focusing.

Status

Supported

Directionality

TX (Transmit): Camera-enabled vehicles (Reports state to GCS)
RX (Receive): None (ArduPilot does not parse this message from GCS)

Transmission (TX)

The transmission logic is abstracted through the AP_Camera and AP_Mount libraries, allowing various
hardware drivers to report their status using this unified MAVLink message.

Core Logic

The primary entry point is AP_Camera::send_camera_settings in

libraries/AP_Camera/AP_Camera.cpp:605. This function iterates through all initialized camera instances and
calls their respective backends.

The message routing from GCS_MAVLink is handled in libraries/GCS_MAVLink/GCS_Common.cpp:6179,
which delegates to AP_Camera::send_mavlink_message (libraries/AP_Camera/AP_Camera.cpp:452).

Supported Drivers (Backends)

Several advanced gimbal and camera drivers implement this message to provide feedback:

Siyi (AP_Mount_Siyi):

Implemented in libraries/AP_Mount/AP_Mount_Siyi.cpp:1107.
Reports zoomLevel calculated from the current zoom multiplier (interpolated against the max
zoom of 6x or 30x depending on hardware model).
Reports mode_id based on _config_info.record_status (Video vs Image).

Viewpro (AP_Mount_Viewpro):

Implemented in libraries/AP_Mount/AP_Mount_Viewpro.cpp:936.
Topotek (AP_Mount_Topotek):

Implemented in libraries/AP_Mount/AP_Mount_Topotek.cpp:562.
Xacti (AP_Mount_Xacti):

Implemented in libraries/AP_Mount/AP_Mount_Xacti.cpp:390.

Data Fields

time_boot_ms : Timestamp (time since system boot).
mode_id : Camera mode (CAMERA_MODE_IMAGE , CAMERA_MODE_VIDEO ,
CAMERA_MODE_IMAGE_SURVEY).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 151 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-information.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L605
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6179
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L452
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Siyi.cpp#L1107
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Viewpro.cpp#L936
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Topotek.cpp#L562
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Xacti.cpp#L390

zoomLevel : Current zoom level as a percentage of the full range (0.0 to 100.0, NaN if not known).
focusLevel : Current focus level as a percentage of the full range (0.0 to 100.0, NaN if not known).

Triggering

This message is typically sent in response to:

1. Command Acknowledgement: After receiving MAV_CMD_DO_SET_CAM_ZOOM_FOCUS or
MAV_CMD_REQUEST_CAMERA_SETTINGS .

2. State Change: Some drivers may stream this message while the lens is moving (zooming) to provide
smooth UI updates.

Practical Use Cases

1. Zoom Slider Feedback:

Scenario: A pilot uses a slider on the GCS to request 50\% zoom.
Action: The physical lens takes 1.5 seconds to move. The gimbal driver sends
CAMERA_SETTINGS updates during this movement, allowing the GCS slider to move in sync
with the actual lens, confirming the command is being executed.

2. Focus Confirmation:

Scenario: The user taps the screen to "Touch Focus".
Action: The camera executes the auto-focus routine. When complete, it sends
CAMERA_SETTINGS with the new focusLevel , confirming to the user that the image is sharp.

3. Mode Switching Verification:
Scenario: The user switches from "Video" to "Photo" mode to take a high-res still.
Action: The camera takes a moment to stop recording and switch buffers. CAMERA_SETTINGS
updates the mode_id , enabling the "Shutter" button on the GCS only when the camera is
actually ready.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:605: Main routing logic.
libraries/AP_Mount/AP_Mount_Siyi.cpp:1107: Example of a driver implementing the message.
libraries/GCS_MAVLink/GCS_Common.cpp:6179: Message definition and ID mapping.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 152 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L605
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Siyi.cpp#L1107
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L6179

CAMERA_CAPTURE_STATUS (ID 262) SUPPORTED

Summary

The CAMERA_CAPTURE_STATUS message reports the current status of the image and video capture
subsystem. It allows the Ground Control Station (GCS) to know if the camera is currently taking photos
(e.g., during a mapping mission) or recording video, along with the current image count and capture
interval.

Status

Supported

Directionality

TX (Transmit): Camera-enabled vehicles (Reports status to GCS)
RX (Receive): None

Transmission (TX)

The transmission is handled by the AP_Camera library, specifically for cameras controlled directly by the
autopilot's internal intervalometer (e.g., Servo, Relay, or basic MAVLink cameras).

Core Logic

The implementation resides in AP_Camera_Backend::send_camera_capture_status within
libraries/AP_Camera/AP_Camera_Backend.cpp:346.

It is triggered by AP_Camera::send_mavlink_message in libraries/AP_Camera/AP_Camera.cpp:633.

Data Fields

time_boot_ms : Timestamp (ms since boot).
image_status :

Calculated from time_interval_settings.num_remaining .
2 ("Interval set but idle") if num_remaining > 0 .
0 ("Idle") otherwise.
Note: The base implementation does not currently return 1 ("Capture in progress") or 3,
limiting its utility to showing intent rather than active exposure.

video_status : Hardcoded to 0 (Idle) in the base implementation.
image_interval : The configured interval in seconds, derived from
time_interval_settings.time_interval_ms .
recording_time_ms : Hardcoded to 0.
available_capacity : Hardcoded to NaN (Not Available).
image_index : The total number of images captured in this session (image_index).

Limitations

Advanced Gimbals: While AP_Mount has a virtual method for this message, most complex drivers
(Siyi, Viewpro, Topotek) do not currently override it. This means they will not report their internal
video recording status or SD card capacity via this message. They typically use CAMERA_SETTINGS
(Mode) and CAMERA_INFORMATION instead.
Video Status: The base AP_Camera implementation assumes it is only controlling a still shutter, so
video_status is always 0.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 153 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L346
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L633
https://mavlinkhud.com/field-manual/mavlink-interface/camera-settings.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-information.html

Practical Use Cases

1. Mapping Mission Progress:

Scenario: A drone is flying a grid pattern for photogrammetry.
Action: The GCS monitors image_index to confirm that the camera is actually incrementing
its photo count, ensuring the trigger cable hasn't failed.

2. Intervalometer Confirmation:

Scenario: The user commands "Take 1 photo every 2 seconds".
Action: The message reports image_interval = 2.0 and image_status = 2 , confirming
the autopilot has accepted the command and is running the timer.

Key Codebase Locations

libraries/AP_Camera/AP_Camera_Backend.cpp:346: Default implementation.
libraries/AP_Camera/AP_Camera.cpp:462: Message handling.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 154 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L346
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L462

VIDEO_STREAM_INFORMATION (ID 269) SUPPORTED

Summary

The VIDEO_STREAM_INFORMATION message provides the Ground Control Station (GCS) with the necessary
connection details to display a live video feed. This includes the Stream URI (e.g.,
rtsp://192.168.144.25:8554/main.264), resolution, framerate, and encoding format.

Status

Supported

Directionality

TX (Transmit): Camera-enabled vehicles (Reports stream config to GCS)
RX (Receive): None

Transmission (TX)

The transmission logic is unique in ArduPilot: the core C++ engine handles the sending of the message, but
the content is typically generated dynamically by a Lua script. This allows users to configure arbitrary IP
cameras without modifying the firmware source code.

Core Logic

1. Sending (C++):

AP_Camera_Backend::send_video_stream_information in
libraries/AP_Camera/AP_Camera_Backend.cpp:263 calls
mavlink_msg_video_stream_information_send_struct .
It sends the data stored in the _stream_info struct.

2. Populating (Lua):

The _stream_info struct is populated by the set_stream_information binding.
The official script libraries/AP_Scripting/applets/video-stream-information.lua
(Source) reads custom parameters (e.g., VID1_CAMMODEL , VID1_IPADDR) to construct the
correct RTSP URI for supported cameras (Siyi, Herelink, Topotek, Viewpro) and pushes this
data to the C++ backend.

Data Fields

stream_id : Stream ID (1-based).
count : Total number of streams.
type : Protocol type (e.g., RTSP, RTPUDP, MPEG-TS).
flags : Status flags (e.g., Thermal, Thermal Range).
framerate : Frame rate in Hz.
resolution_h / resolution_v : Resolution in pixels (e.g., 1920x1080).
bitrate : Bitrate in bits/s.
rotation : Rotation (0, 90, 180, 270).
hfov : Horizontal Field of View (deg).
name : Stream name (e.g., "Video").
uri : The connection string (e.g., rtsp://192.168.144.25:8554/main.264).
encoding : Encoding format (H.264, H.265).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 155 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L263
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Scripting/applets/video-stream-information.lua

Practical Use Cases

1. Siyi/Herelink Integration:

Scenario: A user connects a Siyi ZR10 gimbal.
Action: The Lua script detects VID1_CAMMODEL = 2 (ZR10) and automatically populates the
uri with rtsp://192.168.144.25:8554/main.264 . QGroundControl receives this message
and automatically starts playing the video feed without manual URL entry.

2. Dual-Stream setups:

Scenario: A drone has both a Visible and Thermal camera.
Action: The GCS receives two VIDEO_STREAM_INFORMATION messages (or one with
count=2) and offers the pilot a dropdown to switch between "RGB" and "Thermal" views.

Key Codebase Locations

libraries/AP_Camera/AP_Camera_Backend.cpp:263: C++ Sender.
libraries/AP_Scripting/applets/video-stream-information.lua: Lua Logic for populating data.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 156 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L263
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Scripting/applets/video-stream-information.lua

CAMERA_FOV_STATUS (ID 271) SUPPORTED

Summary

The CAMERA_FOV_STATUS message reports the geospatial projection of the camera's view. Specifically, it
provides the 3D coordinates of the camera itself, the 3D coordinates of the "Point of Interest" (where the
center of the image hits the ground), and the camera's absolute orientation in quaternion format. This is
critical for applications like Augmented Reality (AR) overlays or "Click to Fly" map interfaces.

Status

Supported

Directionality

TX (Transmit): Camera-enabled vehicles (Reports geospatial view)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_Camera library, leveraging the AP_Mount library to perform the
necessary 3D math (ray-tracing).

Core Logic

The implementation is in AP_Camera_Backend::send_camera_fov_status within
libraries/AP_Camera/AP_Camera_Backend.cpp:295.

1. POI Calculation: It calls mount->get_poi() to calculate the intersection of the camera's optical axis
with the terrain (or home altitude).

2. Attitude: It combines the gimbal's attitude (relative to the body) with the vehicle's AHRS yaw to
produce an Earth-Frame Quaternion (quat_ef).

3. Fallback: If the POI cannot be calculated (e.g., the camera is looking above the horizon), it sends the
camera's location but marks the POI coordinates as INT32_MAX .

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
lat_camera : Latitude of camera (deg * 1E7).
lon_camera : Longitude of camera (deg * 1E7).
alt_camera : Altitude of camera (meters * 1000).
lat_image : Latitude of center of image (deg * 1E7).
lon_image : Longitude of center of image (deg * 1E7).
alt_image : Altitude of center of image (meters * 1000).
q : Quaternion of camera orientation (w, x, y, z).
hfov : Horizontal field of view (deg).
vfov : Vertical field of view (deg).

Practical Use Cases

1. Map Projection:

Scenario: A user is looking at the 2D map on the GCS.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 157 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L295
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html

Action: The GCS draws a "View Cone" polygon on the map, showing exactly what the drone's
camera can see on the ground.

2. Target Geolocation:
Scenario: Search and Rescue. The pilot spots a missing person on the video feed.
Action: The GCS reads lat_image / lon_image to instantly provide the GPS coordinates of
the person, without needing to be directly overhead.

Key Codebase Locations

libraries/AP_Camera/AP_Camera_Backend.cpp:295: Implementation of the math and sending
logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 158 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L295

CAMERA_THERMAL_RANGE (ID 277) SUPPORTED

Summary

The CAMERA_THERMAL_RANGE message reports the temperature statistics from a thermal camera.
Specifically, it provides the maximum and minimum temperatures currently detected in the frame, along
with the pixel coordinates of those hot/cold spots. This is essential for industrial inspections (e.g., finding
hot spots on solar panels) or search and rescue (finding a heat signature in a cold environment).

Status

Supported

Directionality

TX (Transmit): Thermal Camera-enabled vehicles (Reports temp stats to GCS)
RX (Receive): None

Transmission (TX)

The message is currently implemented for specific thermal gimbals via the AP_Mount library.

Core Logic

The implementation example can be found in AP_Mount_Siyi::send_camera_thermal_range within
libraries/AP_Mount/AP_Mount_Siyi.cpp:1127.

1. Driver Support: Currently supported by the Siyi ZT6 and Siyi ZT30 gimbals.
2. Data Retrieval: The driver requests temperature data from the gimbal (via Siyi SDK) at 5Hz.
3. Timeout: If fresh data hasn't been received in 3 seconds (AP_MOUNT_SIYI_THERM_TIMEOUT_MS), it
transmits NaN to indicate invalid data.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
stream_id : Video Stream ID (1 for first, 2 for second, etc).
camera_id : Camera ID (1 for first, 2 for second, etc).
max : Temperature max (degC).
max_point_x : Temperature max point x (normalized 0..1).
max_point_y : Temperature max point y (normalized 0..1).
min : Temperature min (degC).
min_point_x : Temperature min point x (normalized 0..1).
min_point_y : Temperature min point y (normalized 0..1).

Practical Use Cases

1. Solar Inspection:

Scenario: A drone scans a solar farm.
Action: The GCS monitors the max field. If it spikes above 70°C, it flags the location and
highlights the max_point_x/y on the video feed to show the defective cell.

2. Firefighting:

Scenario: Mapping a forest fire line.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 159 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Siyi.cpp#L1127

Action: The max temperature confirms active combustion, while min helps calibrate the
color palette of the display.

Key Codebase Locations

libraries/AP_Mount/AP_Mount_Siyi.cpp:1127: Siyi implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 160 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Siyi.cpp#L1127

GIMBAL_MANAGER_INFORMATION (ID 280) SUPPORTED

Summary

The GIMBAL_MANAGER_INFORMATION message is a cornerstone of the MAVLink Gimbal Protocol v2. It
allows the Autopilot (acting as the Gimbal Manager) to advertise its high-level capabilities and configuration
to the Ground Control Station (GCS). This includes supported axes, lock/follow modes, and physical angular
limits.

Status

Supported

Directionality

TX (Transmit): Gimbal-enabled vehicles (Reports capabilities to GCS)
RX (Receive): None

Transmission (TX)

The message is handled by the AP_Mount library, which aggregates the capabilities of the underlying
driver.

Core Logic

The implementation is in AP_Mount_Backend::send_gimbal_manager_information within
libraries/AP_Mount/AP_Mount_Backend.cpp:242.

It populates the cap_flags bitmask via get_gimbal_manager_capability_flags() (Line 208), which
checks the configured MNT_ parameters to see if Roll, Pitch, or Yaw control is enabled

(has_roll_control , etc.).

Data Fields

time_boot_ms : Timestamp (ms since boot).
cap_flags : Bitmap of capabilities (GIMBAL_MANAGER_CAP_FLAGS).

Modes: HAS_RETRACT , HAS_NEUTRAL , HAS_RC_INPUTS .
Pointing: CAN_POINT_LOCATION_LOCAL , CAN_POINT_LOCATION_GLOBAL .
Axes: HAS_ROLL_AXIS , HAS_PITCH_AXIS , HAS_YAW_AXIS .
Behaviors: HAS_ROLL_LOCK/FOLLOW , HAS_PITCH_LOCK/FOLLOW , HAS_YAW_LOCK/FOLLOW .

gimbal_device_id : Component ID of the gimbal device (usually 1).
roll_min / roll_max : Physical limits in radians.
pitch_min / pitch_max : Physical limits in radians.
yaw_min / yaw_max : Physical limits in radians.

Practical Use Cases

1. UI Configuration:

Scenario: A GCS connects to a drone with a 2-axis gimbal (Pitch/Yaw only).
Action: The GCS reads this message, sees HAS_ROLL_AXIS is missing, and automatically
hides the Roll control slider to declutter the interface.

2. Safety Limits:

Scenario: A user tries to command the gimbal to look straight up (+90 deg pitch).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 161 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Backend.cpp#L242
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Backend.cpp#L208

Action: The GCS checks pitch_max (e.g., +45 deg) and clamps the command before
sending it, preventing mechanical strain or frame collisions.

Key Codebase Locations

libraries/AP_Mount/AP_Mount_Backend.cpp:242: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 162 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Backend.cpp#L242

GIMBAL_MANAGER_STATUS (ID 281) SUPPORTED

Summary

The GIMBAL_MANAGER_STATUS message is a key component of the MAVLink Gimbal Protocol v2. It reports
the current status of the gimbal manager, specifically which high-level flags are active (e.g., Lock vs Follow)
and, most importantly, which MAVLink component currently has primary control over the gimbal.

Status

Supported

Directionality

TX (Transmit): Gimbal-enabled vehicles (Reports status to GCS)
RX (Receive): None

Transmission (TX)

The message is handled by the AP_Mount library to reflect the internal state of the arbitration logic.

Core Logic

The implementation is in AP_Mount_Backend::send_gimbal_manager_status within

libraries/AP_Mount/AP_Mount_Backend.cpp:257.

It provides two critical pieces of information:

1. Arbitration: It reports primary_control_sysid and primary_control_compid . This tells all
listeners "Who is driving right now?" (e.g., The Mission Planner GCS, a Companion Computer, or the
RC Controller).

2. Flags: It reports the active state of the gimbal axes (e.g., GIMBAL_MANAGER_FLAGS_YAW_LOCK vs
Follow).

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
flags : High level gimbal manager flags (bitmap).
gimbal_device_id : Gimbal device ID.
primary_control_sysid : Primary control system ID.
primary_control_compid : Primary control component ID.
secondary_control_sysid : Secondary control system ID.
secondary_control_compid : Secondary control component ID.

Practical Use Cases

1. Multi-Operator Handover:
Scenario: A pilot is flying via RC ([sysid](/field-manual/advanced-tuning/system-

identification-mode.html)=1, compid=1), but a Payload Operator wants to take control via
a joystick on a second GCS (sysid=255, compid=190).
Action: The GCS sends a MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE to request control. The
Autopilot accepts this and updates GIMBAL_MANAGER_STATUS to show
primary_control_sysid=255 . The Pilot's UI updates to show "Payload Operator has
control".

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 163 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Backend.cpp#L257
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

2. Mode Verification:

Scenario: The user switches from "Follow Mode" to "Lock Mode".
Action: The GCS monitors flags to verify that GIMBAL_MANAGER_FLAGS_YAW_LOCK becomes
active.

Key Codebase Locations

libraries/AP_Mount/AP_Mount_Backend.cpp:257: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 164 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Backend.cpp#L257

GIMBAL_MANAGER_SET_ATTITUDE (ID 282) SUPPORTED

Summary

The GIMBAL_MANAGER_SET_ATTITUDE message is the primary command for controlling a gimbal in the
MAVLink Gimbal Protocol v2. It allows a Ground Control Station or Companion Computer to command the
gimbal to a specific orientation (using Quaternions) or to a specific rotation rate (using Angular Velocity),
while also managing high-level states like Retract and Neutral.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Controls the gimbal)

Reception (RX)

The message is handled by the AP_Mount library, which translates the MAVLink command into internal
driver calls.

Core Logic

The implementation is in AP_Mount::handle_gimbal_manager_set_attitude within
libraries/AP_Mount/AP_Mount.cpp:419.

1. Target Selection: Uses gimbal_device_id to select the correct gimbal instance.
2. Mode Overrides:

If GIMBAL_MANAGER_FLAGS_RETRACT is set, it calls backend->[set_mode](/field-
manual/mavlink-interface/set-mode.html)(MAV_MOUNT_MODE_RETRACT) .
If GIMBAL_MANAGER_FLAGS_NEUTRAL is set, it calls backend-
>set_mode(MAV_MOUNT_MODE_NEUTRAL) .

3. Mutual Exclusion: It explicitly checks that you are not providing both a Quaternion q AND Angular
Velocities angular_velocity_x/y/z simultaneously. If both are valid numbers (not NaN), the
command is ignored.

4. Attitude Control:

Converts the Quaternion q into Euler angles (Roll, Pitch, Yaw).
Calls set_angle_target with the resulting degrees.
If GIMBAL_MANAGER_FLAGS_YAW_LOCK is set, the Yaw is interpreted as Earth-Frame (North =
0). Otherwise, it is Body-Frame.

5. Rate Control:

Converts angular_velocity_x/y/z (rad/s) into .
Calls set_rate_target .

Data Fields

target_system : System ID.
target_component : Component ID.
flags : High level gimbal manager flags (bitmap).
gimbal_device_id : Component ID of gimbal device to address.

deg/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 165 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp#L419
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation). Set fields to NaN if only angular
velocity should be used.
angular_velocity_x : X angular velocity (rad/s). NaN if only attitude should be used.
angular_velocity_y : Y angular velocity (rad/s). NaN if only attitude should be used.
angular_velocity_z : Z angular velocity (rad/s). NaN if only attitude should be used.

Practical Use Cases

1. Look at Coordinate:

Scenario: A companion computer wants the camera to look at a specific GPS location.
Action: The companion computer calculates the required Earth-Frame Quaternion to point at
the target and sends this message with GIMBAL_MANAGER_FLAGS_YAW_LOCK set.

2. Joystick Control:

Scenario: A pilot is manually controlling the gimbal using a joystick knob.

Action: The GCS maps the joystick position to an angular velocity (e.g., +0.5) and
streams this message to smoothly pan the camera.

Key Codebase Locations

libraries/AP_Mount/AP_Mount.cpp:419: Implementation of the handler.

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 166 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp#L419

GIMBAL_DEVICE_SET_ATTITUDE (ID 284) SUPPORTED

Summary

The GIMBAL_DEVICE_SET_ATTITUDE message is the low-level command used by the Gimbal Manager
(Autopilot) to control the Gimbal Device (Physical Hardware). It is essentially the "driver-level" equivalent of
GIMBAL_MANAGER_SET_ATTITUDE .

Status

Supported

Directionality

TX (Transmit): Autopilot (Commands the Gimbal Device)
RX (Receive): None (ArduPilot does not obey this command from GCS; it is the sender)

Transmission (TX)

ArduPilot uses this message to drive MAVLink-capable gimbals, such as those from Gremsy.

Core Logic

The implementation is in AP_Mount_Gremsy::send_gimbal_device_set_attitude within

libraries/AP_Mount/AP_Mount_Gremsy.cpp:311.

1. Attitude Control:
Converts internal target Euler angles (Roll/Pitch/Yaw) into a Quaternion q .
Sets angular_velocity_x/y/z to NaN .
Sets flags (e.g., GIMBAL_DEVICE_FLAGS_YAW_LOCK) to indicate if the target is Earth-Frame or
Body-Frame.

2. Rate Control:
Sets q to {NaN, NaN, NaN, NaN} .

Populates angular_velocity_x/y/z with the target rates in .

3. Retract:
Sets flags to GIMBAL_DEVICE_FLAGS_RETRACT .
Sets all control values to 0 or NaN .

Data Fields

target_system : System ID.
target_component : Component ID.
flags : Low level gimbal flags (bitmap).
q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation). Set fields to NaN if only angular
velocity should be used.
angular_velocity_x : X angular velocity (rad/s). NaN if only attitude should be used.
angular_velocity_y : Y angular velocity (rad/s). NaN if only attitude should be used.
angular_velocity_z : Z angular velocity (rad/s). NaN if only attitude should be used.

Key Codebase Locations

libraries/AP_Mount/AP_Mount_Gremsy.cpp:311: Implementation of the sender.

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 167 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/gimbal-manager-set-attitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Gremsy.cpp#L311
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Gremsy.cpp#L311

GIMBAL_DEVICE_ATTITUDE_STATUS (ID 285) SUPPORTED (TX & RX)

Summary

The GIMBAL_DEVICE_ATTITUDE_STATUS message is the primary telemetry packet for the Gimbal Device
(physical hardware). It reports the low-level status of the gimbal, including its current orientation
(quaternion), angular velocity, and hardware fault flags.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot -> GCS (Reports the status of attached gimbals).
RX (Receive): Gimbal Device -> Autopilot (Reports hardware status to the manager).

Dual Role Implementation

ArduPilot supports this message in two distinct roles, acting as a bridge between the hardware and the
GCS.

1. Reception (RX) - Consuming Hardware Data

The implementation is in AP_Mount_Gremsy::handle_gimbal_device_attitude_status within

libraries/AP_Mount/AP_Mount_Gremsy.cpp:223.

ArduPilot listens for this message from connected MAVLink gimbals (e.g., Gremsy).
It caches the latest attitude quaternion q and failure_flags .
This data is used to update the internal state of the AP_Mount backend.

2. Transmission (TX) - Reporting to GCS

The implementation is in AP_Mount_Backend::send_gimbal_device_attitude_status within

libraries/AP_Mount/AP_Mount_Backend.cpp:175.

ArduPilot acts as a "Virtual Gimbal Device" towards the GCS.
It sends this message to the GCS, populated with either:

The cached data from the physical MAVLink gimbal (proxying).
The calculated attitude of a PWM/Servo gimbal (synthesized).

This ensures the GCS receives a standard GIMBAL_DEVICE_ATTITUDE_STATUS regardless of the
underlying hardware protocol.

Data Fields

target_system : System ID.
target_component : Component ID.
time_boot_ms : Timestamp (milliseconds since system boot).
flags : Current gimbal device flags (bitmap).
q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation).
angular_velocity_x : X angular velocity (rad/s).
angular_velocity_y : Y angular velocity (rad/s).
angular_velocity_z : Z angular velocity (rad/s).
failure_flags : Failure flags (bitmap).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 168 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Gremsy.cpp#L223
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Backend.cpp#L175
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

delta_yaw : Yaw angle delta (rad).
delta_yaw_velocity : Yaw angular velocity delta (rad/s).
gimbal_device_id : Gimbal device ID.

Key Codebase Locations

libraries/AP_Mount/AP_Mount_Backend.cpp:175: TX Implementation.
libraries/AP_Mount/AP_Mount_Gremsy.cpp:223: RX Implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 169 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Backend.cpp#L175
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Gremsy.cpp#L223

AUTOPILOT_STATE_FOR_GIMBAL_DEVICE (ID 286) SUPPORTED

Summary

The AUTOPILOT_STATE_FOR_GIMBAL_DEVICE message provides the vehicle's high-fidelity state estimation
(Attitude, Velocity, Yaw Rate) directly to a connected Gimbal Device. This allows "Smart Gimbals" (like the
Gremsy T3V3) to fuse the autopilot's robust AHRS solution with their own internal IMU data, resulting in
superior horizon holding and drift correction compared to using the gimbal's IMU alone.

Status

Supported

Directionality

TX (Transmit): Autopilot (Broadcasts state to Gimbal)
RX (Receive): None (Gimbal Device consumes this)

Transmission (TX)

The message is generated by the core GCS_MAVLINK library, drawing data from the AHRS (Attitude and
Heading Reference System).

Core Logic

The implementation is in GCS_MAVLINK::send_autopilot_state_for_gimbal_device within
libraries/GCS_MAVLink/GCS_Common.cpp:5989.

It is typically streamed at a high rate (e.g., 50Hz) to the gimbal over a private UART link.

Data Fields

target_system : System ID.
target_component : Component ID.
time_boot_us : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
q : Quaternion components of autopilot attitude: w, x, y, z (1 0 0 0 is the null-rotation).
q_estimated_delay_us : Estimated delay of the attitude data.
vx : X Speed in NED (m/s).
vy : Y Speed in NED (m/s).
vz : Z Speed in NED (m/s).
v_estimated_delay_us : Estimated delay of the speed data.
feed_forward_angular_velocity_z : Feed forward Z angular velocity (rad/s).
estimator_status : Bitmap indicating the status of the estimator (AHRS).
landed_state : The landed state. Is set to MAV_LANDED_STATE_UNDEFINED if landed state is
unknown.
angular_velocity_z : Z component of angular velocity in NED (rad/s).

Practical Use Cases

1. Horizon Drift Correction:

Scenario: A drone is flying a long, straight mapping line.
Action: The gimbal uses the autopilot's q (which is corrected by GPS/Compass) to correct
the slow drift of its own internal MEMS gyros, ensuring the camera remains perfectly level.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 170 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html
https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5989
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/estimator-status.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

2. Cornering Compensation:

Scenario: The drone executes a sharp turn.
Action: The gimbal uses angular_velocity_z and vx/vy to anticipate the centripetal
acceleration, pre-actuating the motors to keep the image stable.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5989: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 171 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5989

GIMBAL_MANAGER_SET_PITCHYAW (ID 287) SUPPORTED

Summary

The GIMBAL_MANAGER_SET_PITCHYAW message is a high-level command for controlling a gimbal. Unlike
GIMBAL_MANAGER_SET_ATTITUDE , which requires a full Quaternion, this message uses simple Euler angles

(Pitch/Yaw) or angular rates. It is designed for typical "Point and Shoot" or "Pan/Tilt" operations where Roll
control is not required (the gimbal is expected to keep the horizon level).

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Controls the gimbal)

Reception (RX)

The message is handled by the AP_Mount library.

Core Logic

The implementation is in AP_Mount::handle_gimbal_manager_set_pitchyaw within

libraries/AP_Mount/AP_Mount.cpp:484.

1. Target Selection: Uses gimbal_device_id to select the gimbal instance.
2. Mode Overrides: Checks GIMBAL_MANAGER_FLAGS_RETRACT and GIMBAL_MANAGER_FLAGS_NEUTRAL .
3. Mutual Exclusion: It enforces that you cannot set both absolute angles (pitch/yaw) AND rates

(pitch_rate/yaw_rate) in the same message.
4. Control:

Angles: If pitch and yaw are valid (not NaN), it converts them from Radians to Degrees
and calls set_angle_target . Roll is hardcoded to 0.
Rates: If pitch_rate and yaw_rate are valid, it converts them from Rad/s to Deg/s and
calls set_rate_target .
Yaw Lock: If GIMBAL_MANAGER_FLAGS_YAW_LOCK is set, Yaw is treated as Earth-Frame
(North=0). Otherwise, it is Body-Frame.

Data Fields

target_system : System ID.
target_component : Component ID.
flags : High level gimbal manager flags (bitmap).
gimbal_device_id : Component ID of gimbal device to address.
pitch : Pitch angle (rad).
yaw : Yaw angle (rad).
pitch_rate : Pitch angular rate (rad/s).
yaw_rate : Yaw angular rate (rad/s).

Practical Use Cases

1. Object Tracking:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 172 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/gimbal-manager-set-attitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp#L484
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

Scenario: A companion computer is running vision tracking.
Action: The computer calculates the required Pitch and Yaw error to center the target and
sends this message with pitch_rate and yaw_rate to close the loop.

2. Simple Pointing:

Scenario: A user clicks "Look North" on the map.
Action: The GCS sends pitch=0 and yaw=0 (North) with YAW_LOCK set.

Key Codebase Locations

libraries/AP_Mount/AP_Mount.cpp:484: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 173 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp#L484

WINCH_STATUS (ID 9005) SUPPORTED

Summary

The WINCH_STATUS message reports the telemetry from an onboard winch system (e.g., used for delivery
or retrieval). It allows the GCS to display line length, tension, and operational state.

Status

Supported

Directionality

TX (Transmit): Autopilot (Reports winch status to GCS)
RX (Receive): None

Transmission (TX)

The message is generated by the AP_Winch library. Support varies by backend.

Core Logic

The implementation example is in AP_Winch_Daiwa::send_status within

libraries/AP_Winch/AP_Winch_Daiwa.cpp:77.

Daiwa Winch: Reports full telemetry including tension, voltage, current, and clutch status.
PWM Winch: Reports estimated line length and desired speed (as it lacks feedback).

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
line_length : Length of the line released.
speed : Speed of the line release.
tension : Tension on the line.
voltage : Voltage of the battery supplying the winch.
current : Current draw from the winch.
temperature : Temperature of the motor.
status : Status flags.

Practical Use Cases

1. Package Delivery:

Scenario: A drone hovers to lower a package.
Action: The winch lowers the line. The GCS monitors line_length . When the package
touches the ground, tension drops, allowing the GCS (or Lua script) to trigger the release
mechanism.

Key Codebase Locations

libraries/AP_Winch/AP_Winch_Daiwa.cpp:77: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 174 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Winch/AP_Winch_Daiwa.cpp#L77
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Winch/AP_Winch_Daiwa.cpp#L77

CAN-BUS

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 175 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

CAN_FRAME (ID 386) SUPPORTED (TX & RX)

Summary

The CAN_FRAME message encapsulates a raw Controller Area Network (CAN) frame. It is used to bridge the
vehicle's onboard CAN buses over the MAVLink connection, effectively turning the Autopilot into an SLCAN
adapter. This allows external tools (like the DroneCAN GUI) to interact with CAN peripherals via the
autopilot's telemetry or USB link.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot -> GCS (Forwards frames received on the physical CAN bus).
RX (Receive): GCS -> Autopilot (Injects frames onto the physical CAN bus).

Usage

The bridging functionality is controlled via the MAV_CMD_CAN_FORWARD command.

Enable: Send MAV_CMD_CAN_FORWARD with param1 = bus_id to start receiving CAN_FRAME
messages from that bus.
Disable: Send MAV_CMD_CAN_FORWARD with param1 = 0 .

Core Logic

The implementation is in AP_CANManager within libraries/AP_CANManager/AP_CANManager.cpp.

1. RX (Injection): handle_can_frame (Line 486) receives the message, buffers it, and writes it to the
specified physical CAN bus.

2. TX (Forwarding): can_frame_callback (Line 665) listens to the physical CAN bus and forwards
frames to MAVLink if forwarding is enabled for that channel.

Data Fields

target_system : System ID.
target_component : Component ID.
bus : Bus number.
len : Frame length.
id : Frame ID.
data : Frame data.

Practical Use Cases

1. DroneCAN Debugging:

Scenario: A user wants to update the firmware on a CAN GPS or ESC.
Action: They connect the DroneCAN GUI to the Autopilot's USB port (MAVLink SLCAN). The
Autopilot forwards all CAN traffic, allowing the GUI to see and update the peripheral as if it
were directly connected.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 176 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_CANManager/AP_CANManager.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_CANManager/AP_CANManager.cpp#L486
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_CANManager/AP_CANManager.cpp#L665
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

CANFD_FRAME (ID 387) SUPPORTED (TX & RX)

Summary

The CANFD_FRAME message encapsulates a raw CAN FD (Flexible Data-rate) frame. It serves the same
purpose as CAN_FRAME (386) but supports the extended data length (up to 64 bytes) and faster bitrates of
the CAN FD standard.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot -> GCS (Forwards CAN FD frames).
RX (Receive): GCS -> Autopilot (Injects CAN FD frames).

Usage

The bridging functionality is controlled via the MAV_CMD_CAN_FORWARD command, just like CAN_FRAME .

Core Logic

The implementation is in AP_CANManager within libraries/AP_CANManager/AP_CANManager.cpp:706.

1. Detection: When a frame arrives on the bus, can_frame_callback checks
frame.isCanFDFrame() .

2. Routing: If it is a CAN FD frame, it is wrapped in this message instead of the legacy CAN_FRAME .

Data Fields

target_system : System ID.
target_component : Component ID.
bus : Bus number.
len : Frame length.
id : Frame ID.
data : Frame data.

Practical Use Cases

1. Modern Peripheral Updates:

Scenario: Updating a newer DroneCAN servo that uses CAN FD for faster telemetry updates.
Action: The DroneCAN GUI sends firmware blocks using CANFD_FRAME messages, which the
Autopilot injects onto the high-speed bus.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 177 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/can-frame.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_CANManager/AP_CANManager.cpp#L706
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html

CAN_FILTER_MODIFY (ID 388) SUPPORTED

Summary

The CAN_FILTER_MODIFY message allows the Ground Control Station (GCS) to dynamically configure the
whitelist of CAN IDs that are forwarded by the Autopilot via the CAN_FRAME / CANFD_FRAME mechanism.
This is essential for managing bandwidth on the telemetry link, allowing the GCS to subscribe only to
specific DroneCAN messages of interest.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Configures internal CAN forwarding filters)

Usage

This message is typically sent by the DroneCAN GUI or a script after enabling forwarding with
MAV_CMD_CAN_FORWARD .

Core Logic

The implementation is in AP_CANManager::handle_can_filter_modify within
libraries/AP_CANManager/AP_CANManager.cpp:575.

It maintains a sorted list of whitelisted IDs (can_forward.filter_ids) and performs binary searches to
filter outgoing frames efficiently.

Operations

The operation field controls how the provided list of IDs is applied:

0 (CAN_FILTER_REPLACE): Replaces the entire current whitelist with the new list.
1 (CAN_FILTER_ADD): Adds the new IDs to the existing whitelist (ignoring duplicates).
2 (CAN_FILTER_REMOVE): Removes the specified IDs from the existing whitelist.

Data Fields

target_system : System ID.
target_component : Component ID.
bus : Bus number.
operation : What operation to perform on the filter list.
num_ids : Number of IDs in ids list.
ids : Filter IDs, length 16.

Practical Use Cases

1. Selective Sniffing:
Scenario: A developer wants to debug the GNSS output of a CAN GPS but doesn't want to
flood the telemetry link with high-frequency ESC status messages.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 178 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/can-frame.html
https://mavlinkhud.com/field-manual/mavlink-interface/canfd-frame.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_CANManager/AP_CANManager.cpp#L575
https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/debug.html
https://mavlinkhud.com/field-manual/sensor-architecture/gps-integration.html

Action: The tool sends CAN_FILTER_REPLACE with only the DroneCAN GNSS Fix message ID.
The Autopilot now only forwards those specific frames.

LOGGING

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 179 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

FILE_TRANSFER_PROTOCOL (ID 110) SUPPORTED (RX & TX)

Summary

File transfer message. Acts as a transport layer for the MAVLink FTP protocol (an FTP-like protocol over
MAVLink).

Status

Supported (RX & TX)

Directionality

TX (Transmit): All Vehicles - Sends FTP replies (file data, directory listings).
RX (Receive): All Vehicles - Receives FTP requests (read, list, write).

Reception (RX)

Handled by GCS_MAVLINK::handle_file_transfer_protocol .

Source: libraries/GCS_MAVLink/GCS_FTP.cpp

Protocol Logic

Implements a stateful FTP server.

OpCodes: Open, Read, Write, Terminate, ListDirectory, CreateDirectory, RemoveFile, etc.
Transport: Data is encapsulated in the payload field.

Data Fields

target_network : Network ID (0 for default).
target_system : System ID.
target_component : Component ID.
payload : Variable length payload containing OpCode, Session ID, Offset, and Data.

Practical Use Cases

1. Log Downloading:
Scenario: Downloading Dataflash logs via MAVLink.
Action: Mission Planner uses MAVFTP to list files in @SYS/logs and download the .bin
files.

2. Script Upload:

Scenario: Uploading a Lua script.
Action: User uploads script.lua to the scripts/ directory on the SD card via MAVFTP.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_FTP.cpp:71: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 180 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-ftp.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_FTP.cpp#L71
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

PARAMETERS

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 181 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

PARAM_REQUEST_READ (ID 20) SUPPORTED

Summary

The PARAM_REQUEST_READ message is used by a Ground Control Station (GCS) to request the current value
of a specific onboard parameter. ArduPilot supports looking up parameters either by their index (offset in
the list) or by their 16-character string ID.

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Requests a PARAM_VALUE reply)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_param_request_read in

libraries/GCS_MAVLink/GCS_Param.cpp:225.

Architecture: Asynchronous Lookup

ArduPilot does not look up the parameter immediately upon receipt to avoid blocking the main loop.

1. Queueing: The handler decodes the message and pushes a request into a pending_param_request
queue.

2. Processing: A background IO timer (GCS_MAVLINK::param_io_timer) pops the request.
3. Lookup:

By Index: If param_index is not -1 , it uses AP_Param::find_by_index .
By ID: If param_index is -1 , it uses AP_Param::find with the param_id string.

4. Response: If found, the result is queued for transmission as a PARAM_VALUE message.

Data Fields

target_system : System ID.
target_component : Component ID.
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable
chars and WITHOUT null termination (NULL) if the length is exactly 16 chars - applications have to
provide 16+1 bytes storage if the ID is stored as string.
param_index : Parameter index. Send -1 to use the param ID field as identifier (else the param id will
be ignored).

Practical Use Cases

1. Single Parameter Refresh:

Scenario: A user changes a PID value and wants to verify it was written correctly.
Action: The GCS sends PARAM_REQUEST_READ for ATC_RAT_RLL_P to confirm the new value.

2. Lazy Loading:

Scenario: A mobile GCS wants to show a "Battery Settings" page but doesn't want to
download all 1000+ parameters on connection.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 182 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-value.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L225
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

Action: It requests only the specific parameters needed for that page (e.g., BATT_MONITOR ,
BATT_CAPACITY) on demand.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Param.cpp:225: Contains handle_param_request_read and the
async param_io_timer .

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 183 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L225

PARAM_REQUEST_LIST (ID 21) SUPPORTED

Summary

The PARAM_REQUEST_LIST message triggers a bulk transfer of all onboard parameters. This is the primary
"handshake" event when a Ground Control Station (GCS) connects to the vehicle, allowing it to download
the full configuration state (typically 1000+ parameters).

Status

Supported

Directionality

TX (Transmit): Specific Peripherals (ArduPilot acts as a GCS to a Gimbal)
RX (Receive): All Vehicles (Triggers bulk download)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_param_request_list in

libraries/GCS_MAVLink/GCS_Param.cpp:206.

Streaming Architecture

ArduPilot handles the massive task of sending all parameters without blocking the main flight loop using a
deferred state machine:

1. Initialization: The handler resets the internal cursor (_queued_parameter) to the first parameter
index.

2. Scheduling: It does not loop immediately. Instead, it relies on the GCS scheduler
(try_send_message).

3. Iteration: In subsequent main loop cycles, the scheduler calls queued_param_send .
4. Rate Limiting: queued_param_send is highly sophisticated:

It checks available bandwidth (bw_in_bytes_per_second).
It enforces a 1ms execution time limit per burst to prevent CPU starvation.
It temporarily slows down other telemetry streams (by 4x) to prioritize the parameter
download.

Transmission (TX)

Interestingly, ArduPilot can also act as a client for this message.

Solo Gimbal: In libraries/AP_Mount/SoloGimbal_Parameters.cpp, ArduPilot sends
PARAM_REQUEST_LIST to a connected Solo Gimbal to learn its configuration.

Data Fields

target_system : System ID.
target_component : Component ID.

Practical Use Cases

1. Initial Connection:

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 184 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L206
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/SoloGimbal_Parameters.cpp
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

Scenario: A pilot connects Mission Planner to the drone via USB.
Action: Mission Planner sends PARAM_REQUEST_LIST . The green bar loads as ArduPilot
streams ~1200 PARAM_VALUE messages back.

2. Backup/Restore:

Scenario: A user wants to save a "Known Good" config file.
Action: The GCS requests the list and saves the results to a .param file.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Param.cpp:206: Contains handle_param_request_list and the
queued_param_send state machine.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 185 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-value.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L206

PARAM_VALUE (ID 22) SUPPORTED

Summary

The PARAM_VALUE message is the fundamental unit of configuration data in MAVLink. It carries the name
(param_id), value (as a float), and type of a single onboard parameter. It is primarily sent by the vehicle in
response to read/list requests, but ArduPilot also receives it when acting as a GCS for smart peripherals
(like Gimbals).

Status

Supported

Directionality

TX (Transmit): All Vehicles (Streams configuration to GCS)
RX (Receive): Specific Peripherals (Receives configuration from Gimbal)

Transmission (TX)

The transmission logic is centered in libraries/GCS_MAVLink/GCS_Param.cpp.

Encoding Logic

Storage vs. Protocol: Internally, ArduPilot stores parameters as int8 , int16 , int32 , or float .
MAVLink 1.0/common only supports passing values as float .
Conversion: AP_Param::cast_to_float() is used to convert integer parameters into the float field
of the message. This works because a 32-bit float can exactly represent all 16-bit integers and most
relevant 32-bit integers.
Type Hinting: The message includes a param_type field (e.g., MAV_PARAM_TYPE_INT32). A smart
GCS uses this to cast the float back to the correct integer type for display.

Senders

1. queued_param_send : In GCS_Param.cpp:41, the background stream used for PARAM_REQUEST_LIST .
2. send_parameter_async_replies : Used for PARAM_REQUEST_READ replies.
3. handle_param_set : In GCS_Param.cpp:263, immediate echo-back when a parameter is written.

Reception (RX)

ArduPilot handles this message in GCS_MAVLINK::handle_param_value within

libraries/GCS_MAVLink/GCS_Common.cpp:821.

Usage

It delegates the message to the AP_Mount library.

Scenario: A 3DR Solo Gimbal is connected.
Behavior: The gimbal sends its own parameters to the autopilot.
SoloGimbal_Parameters::handle_param_value parses these to populate its internal state, allowing
the autopilot to "know" the gimbal's tuning.

Data Fields

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 186 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L41
https://mavlinkhud.com/field-manual/mavlink-interface/param-request-list.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-request-read.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L263
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L821

param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable
chars and WITHOUT null termination (NULL) if the length is exactly 16 chars - applications have to
provide 16+1 bytes storage if the ID is stored as string.
param_value : Onboard parameter value.
param_type : Onboard parameter type: see the MAV_PARAM_TYPE enum for supported data types.
param_count : Total number of onboard parameters.
param_index : Index of this onboard parameter.

Practical Use Cases

1. Configuration Display:
Scenario: A GCS receives PARAM_VALUE for RTL_ALT with value 1500.0 .
Action: It displays "Return Altitude: 15m" (1500cm).

2. Verification:

Scenario: A script sets a parameter.
Action: It waits for the PARAM_VALUE broadcast to confirm the autopilot accepted and applied
the change.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Param.cpp:41: Primary TX logic (streaming).
libraries/GCS_MAVLink/GCS_Common.cpp:821: Entry point for received PARAM_VALUE .
libraries/AP_Mount/SoloGimbal_Parameters.cpp: Client-side RX logic for gimbals.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 187 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L41
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L821
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/SoloGimbal_Parameters.cpp

PARAM_SET (ID 23) SUPPORTED

Summary

The PARAM_SET message is the standard way to modify vehicle configuration over MAVLink. It allows a
Ground Control Station (GCS) to write a new value to a specific parameter identified by its string ID.
ArduPilot handles these requests by updating the internal parameter state and committing the change to
non-volatile storage (EEPROM/Flash).

Status

Supported

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Modifies configuration)

Reception (RX)

Reception is handled by GCS_MAVLINK::handle_param_set in libraries/GCS_MAVLink/GCS_Param.cpp:263.

Processing Logic

1. Lookup: The autopilot identifies the parameter by its 16-character name.
2. Safety Check: It verifies if the parameter allows modification via MAVLink using

allow_set_via_mavlink .
If denied (e.g., a read-only hardware ID), ArduPilot sends a PARAM_VALUE message
containing the original value as an implicit NACK.

3. Validation: It rejects NaN or Inf values.
4. Update: The internal value is updated via set_float .
5. Persistence: The change is saved to storage via vp->save() .
6. Notification: ArduPilot broadcasts a PARAM_VALUE message to all active channels to confirm the
change. This is triggered by the GCS_SEND_PARAM macro in libraries/AP_Param/AP_Param.cpp.

Data Fields

target_system : System ID.
target_component : Component ID.
param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable
chars and WITHOUT null termination (NULL) if the length is exactly 16 chars - applications have to
provide 16+1 bytes storage if the ID is stored as string.
param_value : Onboard parameter value.
param_type : Onboard parameter type: see the MAV_PARAM_TYPE enum for supported data types.

Practical Use Cases

1. Field Tuning:

Scenario: A pilot notices the drone is oscillating in flight.
Action: The GCS sends PARAM_SET for ATC_RAT_RLL_P with a lower value. The drone
applies it immediately, and the pilot observes the result.

2. Mission Configuration:
Scenario: Before a flight, the GCS sets RTL_ALT to 50m to avoid tall trees at the specific site.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 188 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L263
https://mavlinkhud.com/field-manual/mavlink-interface/param-value.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Param/AP_Param.cpp
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

Action: ArduPilot saves the value to Flash, ensuring it persists across reboots.
3. Component Integration:

Scenario: A companion computer enables a new feature (e.g., Obstacle Avoidance) by setting
OA_TYPE to 1.
Action: ArduPilot re-initializes the Avoidance subsystem upon receiving the parameter
change.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Param.cpp:263: Main entry point for writing parameters.
libraries/AP_Param/AP_Param.cpp: Implements the GCS_SEND_PARAM broadcast logic.

REMOTE-ID

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 189 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L263
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Param/AP_Param.cpp

OPEN_DRONE_ID_BASIC_ID (ID 12900) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_BASIC_ID message provides the unique identification of the Unmanned Aircraft (UA),
serving as the digital "license plate" for Remote ID compliance.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Broadcasts ID to GCS or Remote ID Module)
RX (Receive): Autopilot (Receives config from GCS)

Usage

ArduPilot supports the full OpenDroneID protocol stack. It can act as the source of Remote ID data (TX) or
as a configurator for external RID modules.

Core Logic

The implementation is in AP_OpenDroneID::handle_msg within

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp:768.

1. RX: If the GCS sends this message, ArduPilot updates its internal RID state (pkt_basic_id).
2. TX: ArduPilot periodically broadcasts this message to connected MAVLink peripherals (like a WiFi

RID transmitter) to ensure they are broadcasting the correct ID.

Data Fields

target_system / target_component : Target.
id_type : Type of ID (MAV_ODID_ID_TYPE), e.g., Serial Number, CAA Registration ID.
ua_type : Type of vehicle (MAV_ODID_UA_TYPE).
uas_id : The unique ID string (max 20 bytes).

Practical Use Cases

1. Regulatory Compliance:

Scenario: Operating in FAA or EASA airspace.
Action: The drone broadcasts its ANSI/CTA-2063 Serial Number so that local authorities can
identify the aircraft without physical access.

2. Fleet Management:
Scenario: A swarm show with 50 drones.
Action: The central computer verifies that every drone on the network is reporting the
correct, pre-assigned uas_id before arming.

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp:768: Message handler and state management.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 190 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/remote-id/core-concepts-and-regulations.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp#L768
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp#L768

OPEN_DRONE_ID_LOCATION (ID 12901) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_LOCATION message reports the vehicle's dynamic state (Position, Altitude, Velocity)
for Remote ID compliance. This is the most frequent message in the ODID protocol (typically 1Hz).

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Broadcasts location to GCS/RID Module)
RX (Receive): Autopilot (Receives updates if using external GPS)

Transmission (TX)

The message is generated by AP_OpenDroneID::send_location_message .

Core Logic

The implementation is in libraries/AP_OpenDroneID/AP_OpenDroneID.cpp.

It pulls data from the AHRS and GPS:

latitude / longitude : Current position.
altitude_barometric : Barometric altitude relative to takeoff.
altitude_geodetic : GPS altitude (WGS84).
height : Height above ground/takeoff.
speed_horizontal : Ground speed.
direction : Course over ground.

Data Fields

target_system / target_component : Target.
status : Status (MAV_ODID_STATUS) e.g., Airborne, Ground, Emergency.
direction : Direction (0-360 deg).
speed_horizontal : Speed (cm/s).
speed_vertical : Vertical speed (cm/s).
latitude / longitude : Position (degE7).
altitude_barometric : Baro Alt (m).
altitude_geodetic : GPS Alt (m).
height_reference : Reference datum.
height : Height (m).
horizontal_accuracy / vertical_accuracy / barometer_accuracy / speed_accuracy :

Accuracy metrics.
timestamp : Time since boot.
timestamp_accuracy : Time accuracy.

Practical Use Cases

1. Airspace Safety:

Scenario: A medical helicopter is flying low near a drone operation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 191 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/remote-id/core-concepts-and-regulations.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html

Action: The helicopter's ADS-B In or traffic awareness system receives the drone's
OPEN_DRONE_ID_LOCATION broadcast, alerting the pilot to the drone's precise location and
altitude.

2. Flight Recorder:
Scenario: Post-flight path analysis.
Action: The GCS logs these messages to reconstruct the 3D flight path with high-fidelity
velocity vectors, useful for verifying flight boundaries were respected.

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp: Implementation of send_location_message .

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 192 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/object-avoidance/adsb-collision-avoidance.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp

OPEN_DRONE_ID_AUTHENTICATION (ID 12902) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_AUTHENTICATION message provides authentication data for the Unmanned Aircraft.
This allows observers to verify that the broadcast Remote ID data is authentic and has not been spoofed.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Broadcasts auth data)
RX (Receive): Autopilot (Receives auth config)

Transmission (TX)

The message is handled by AP_OpenDroneID .

Core Logic

It transmits an authentication signature or page of authentication data. Since auth data can be large, it may
be split across multiple messages (pages).

Data Fields

target_system / target_component : Target.
authentication_type : Type of authentication (MAV_ODID_AUTH_TYPE).
data_page : Page number.
last_page_index : Last page index.
length : Length of data in this page.
timestamp : Timestamp.
authentication_data : Raw data buffer (up to 23 bytes).

Practical Use Cases

1. Anti-Spoofing:

Scenario: A malicious actor tries to broadcast fake drone locations to disrupt an airport.
Action: Security systems check the digital signature provided in this message against a
trusted registry. The fake broadcasts fail validation and are flagged as spoofed.

2. Secure Access:

Scenario: A delivery drone enters a secure facility.
Action: The facility's receiver validates the authentication token to confirm the drone is an
authorized delivery vehicle before opening the landing bay.

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp: Handling of authentication pages.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 193 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-signing-security.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp

OPEN_DRONE_ID_SELF_ID (ID 12903) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_SELF_ID message allows the operator to provide a free-text description of the flight or
vehicle. This is often used for "Mission Description" or "Emergency Text" in the Remote ID broadcast.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Broadcasts self-ID)
RX (Receive): Autopilot (Receives config)

Transmission (TX)

The message is handled by AP_OpenDroneID .

Core Logic

It broadcasts the configured description string.

Data Fields

target_system / target_component : Target.
description_type : Type of description (MAV_ODID_DESC_TYPE).
description : Description string (up to 23 bytes).

Practical Use Cases

1. Emergency Communication:

Scenario: A drone is performing an emergency medical delivery.
Action: The operator sets the description to "EMERGENCY MEDICAL BLOOD". Anyone
receiving the RID signal sees this text and understands the priority nature of the flight.

2. Mission Identification:

Scenario: Multiple survey teams are working in the same area.
Action: Team A sets their description to "Survey Team A", allowing them to distinguish their
drones from Team B on the monitoring app.

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp: Text handling logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 194 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp

OPEN_DRONE_ID_SYSTEM (ID 12904) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_SYSTEM message provides operator location and system metadata. This includes the
pilot's location (Takeoff or Live GCS location) and the altitude reference.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Broadcasts system data)
RX (Receive): Autopilot (Receives GCS/Operator location)

Transmission (TX)

The message is handled by AP_OpenDroneID .

Core Logic

It pulls the Operator Location either from the GCS (via OPEN_DRONE_ID_SYSTEM_UPDATE) or uses the
vehicle's home location if GCS location is unavailable.

Data Fields

target_system / target_component : Target.
flags : Flags.
operator_latitude : Operator Lat (degE7).
operator_longitude : Operator Lon (degE7).
area_count : Count of area points.
area_radius : Radius of operation.
area_ceiling : Ceiling height.
area_floor : Floor height.
category_eu : EU Category.
class_eu : EU Class.
operator_altitude_geo : Operator Altitude (Geodetic).
timestamp : Timestamp.

Practical Use Cases

1. Pilot Accountability:

Scenario: A drone is flying dangerously near a crowd.
Action: Law enforcement checks the Remote ID broadcast. The
operator_latitude / longitude points them to the pilot's location, allowing them to
intervene directly.

2. Home Point Verification:

Scenario: A user sets up for a long-range flight.
Action: The GCS sends its GPS location to the drone. The drone broadcasts this as the
Operator Location, ensuring compliance with regulations that require the pilot's location to be
known.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 195 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-system-update.html

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp: Operator location handling.

OPEN_DRONE_ID_OPERATOR_ID (ID 12905) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_OPERATOR_ID message broadcasts the Operator ID (e.g., FAA Registration Number or
CAA Operator ID) required for Remote ID compliance.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Broadcasts Operator ID)
RX (Receive): Autopilot (Receives Operator ID config)

Transmission (TX)

The message is handled by AP_OpenDroneID .

Core Logic

It broadcasts the configured Operator ID string.

Data Fields

target_system / target_component : Target.
operator_id_type : Type of ID (MAV_ODID_OPERATOR_ID_TYPE).
operator_id : Operator ID string (up to 20 bytes).

Practical Use Cases

1. Compliance Audits:
Scenario: An aviation authority audits drone operations at a commercial site.
Action: They monitor the RID broadcast and compare the operator_id against their
database of registered commercial operators to ensure the company is compliant.

2. Incident Reporting:

Scenario: A drone crashes on private property.
Action: The homeowner uses a RID scanner app to read the operator_id , which can be
provided to authorities to identify the owner for insurance claims.

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp: ID string storage.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 196 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp

OPEN_DRONE_ID_MESSAGE_PACK (ID 12915) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_MESSAGE_PACK allows packing multiple OpenDroneID messages into a single MAVLink
payload. This is efficient for bandwidth-constrained links or for ensuring atomic updates of RID data.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Broadcasts packed data)
RX (Receive): Autopilot (Parses packed data)

Transmission (TX)

ArduPilot can parse this message if received from a peripheral, but typically transmits individual ODID
messages for compatibility.

Data Fields

target_system / target_component : Target.
single_message_size : Size of each message in the pack.
msg_pack_size : Total size.
messages : Buffer containing concatenated ODID messages.

Practical Use Cases

1. Bandwidth Optimization:

Scenario: A telemetry link has very limited bandwidth (e.g., LoRa).
Action: Instead of sending 5 separate MAVLink headers for Basic ID, Location, System, etc.,
the system packs them into one MESSAGE_PACK , reducing overhead and ensuring all data
arrives together.

2. Atomic Updates:

Scenario: Updating the Remote ID state on a companion computer.
Action: The Autopilot sends a pack containing both the new Location and the new Vector. The
companion computer processes them simultaneously, avoiding a race condition where the
location updates before the vector.

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp: Message parsing logic.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 197 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/remote-id/core-concepts-and-regulations.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/remote-id/core-concepts-and-regulations.html
https://mavlinkhud.com/field-manual/build-guide/radio-control-link.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp

OPEN_DRONE_ID_ARM_STATUS (ID 12918) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_ARM_STATUS message reports the health and arming status of the Remote ID system. It
allows the Remote ID module (e.g., a DroneCAN device) to block the vehicle from arming if the RID system
is not healthy or compliant, and provides a text error message explaining why.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Forwards RID status to GCS)
RX (Receive): Autopilot (Receives status from DroneCAN RID module)

Usage

ArduPilot acts as a bridge for this message.

Core Logic

The implementation is in handle_arm_status within

libraries/AP_OpenDroneID/AP_OpenDroneID_DroneCAN.cpp:215.

1. Reception: The Autopilot receives a dronecan.[remoteid](/field-manual/remote-id/core-
concepts-and-regulations.html).ArmStatus message from the CAN bus.

2. State Update: It updates the internal AP_OpenDroneID state, which the Arming Checks
(AP_Arming) monitor. If the status is not "Good", the autopilot will refuse to arm.

3. Forwarding: It immediately forwards the status to the GCS via MAVLink so the pilot can see the error
message (e.g., "RID: System Failure").

Data Fields

status : Status (MAV_ODID_ARM_STATUS) e.g., GOOD_TO_ARM , PRE_FLIGHT_CHECKS_FAIL .
error : Text error message (up to 50 bytes).

Practical Use Cases

1. Pre-Flight Safety:
Scenario: A user tries to arm the drone, but the Remote ID module has not yet acquired a GPS
lock.
Action: The module sends OPEN_DRONE_ID_ARM_STATUS with status FAIL and error "Wait for
GPS". The autopilot blocks arming, and the GCS displays "Wait for GPS" to the pilot.

2. Tamper Detection:
Scenario: The Remote ID antenna is disconnected.
Action: The module detects the hardware fault and reports "Antenna Fail". The drone prevents
takeoff, ensuring regulatory compliance.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 198 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID_DroneCAN.cpp#L215
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

libraries/AP_OpenDroneID/AP_OpenDroneID_DroneCAN.cpp:215: Handler for DroneCAN to
MAVLink bridging.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 199 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID_DroneCAN.cpp#L215

OPEN_DRONE_ID_SYSTEM_UPDATE (ID 12919) SUPPORTED (TX & RX)

Summary

The OPEN_DRONE_ID_SYSTEM_UPDATE message allows the Ground Control Station (GCS) to send real-time
updates about the Operator's location to the drone. This is crucial for satisfying the Remote ID requirement
to broadcast the pilot's location, especially if the pilot is mobile.

Status

Supported (TX & RX)

Directionality

TX (Transmit): Autopilot (Forwards update to RID module)
RX (Receive): Autopilot (Receives Operator Location from GCS)

Usage

The GCS typically sends this message at 1Hz if the GCS has a GPS source (e.g., tablet GPS).

Core Logic

The implementation is in AP_OpenDroneID::handle_msg within

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp:777.

1. Reception: The Autopilot receives the message from the GCS.
2. Update: It updates the internal pkt_system structure with the new operator_latitude ,

operator_longitude , and operator_altitude_geo .
3. Transmission: The Autopilot then uses these updated values when constructing the

OPEN_DRONE_ID_SYSTEM message broadcast to the Remote ID module.

Data Fields

target_system / target_component : Target.
operator_latitude : Operator Lat (degE7).
operator_longitude : Operator Lon (degE7).
operator_altitude_geo : Operator Altitude (Geodetic).
timestamp : Timestamp.

Practical Use Cases

1. Mobile Command Center:

Scenario: A pilot is operating from a moving vehicle.
Action: The GCS sends OPEN_DRONE_ID_SYSTEM_UPDATE continuously. The drone updates its
broadcast to reflect the pilot's changing position, ensuring compliance with "Mobile GCS"
regulations.

2. Dynamic Home Point:

Scenario: The drone takes off from a boat.
Action: As the boat moves, the GCS updates the operator location. If the drone needs to RTL
(Return to Launch), it can use this updated operator location (depending on configuration) or
at least correctly report where the pilot is currently located.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 200 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp#L777
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-system.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/flight-modes/copter-smart-rtl.html

Key Codebase Locations

libraries/AP_OpenDroneID/AP_OpenDroneID.cpp:777: Message handler.

SIMULATION

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 201 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp#L777

SIMSTATE (ID 164) SUPPORTED (SITL ONLY)

Summary

The SIMSTATE message provides the "Ground Truth" state of the vehicle from the Software In The Loop
(SITL) simulator. It allows developers to compare the autopilot's estimated state (AHRS/EKF) against the
perfect physical reality simulated by the physics engine.

Status

Supported (SITL Only)

Directionality

TX (Transmit): SITL Vehicles (Reports perfect simulation state)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by SIM::simstate_send within libraries/SITL/SITL.cpp:1514.

Data Source

All fields are populated directly from the internal SITL::state structure, which holds the physics engine's
calculations for position, attitude, and dynamics.

Data Fields

roll : True roll angle (radians).
pitch : True pitch angle (radians).
yaw : True yaw angle (radians), normalized to +/- PI.
xacc : True X acceleration (m/s/s) in body frame.
yacc : True Y acceleration (m/s/s) in body frame.
zacc : True Z acceleration (m/s/s) in body frame.
xgyro : True roll rate (rad/s) in body frame.
ygyro : True pitch rate (rad/s) in body frame.
zgyro : True yaw rate (rad/s) in body frame.
lat : True latitude (deg * 1E7).
lng : True longitude (deg * 1E7).

Practical Use Cases

1. Estimator Tuning:

Scenario: A developer is tuning the EKF.
Action: By plotting SIMSTATE.roll vs ATTITUDE.roll , they can see exactly how much error
the estimator has and how much lag is introduced by filtering.

2. Vibration Testing:
Scenario: Testing how the EKF handles high vibration.
Action: The simulator adds noise to the IMU data (RAW_IMU). Comparing the noisy RAW_IMU
against the clean SIMSTATE and the filtered ATTITUDE helps verify the vibration rejection
logic.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 202 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/SITL/SITL.cpp#L1514
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/mavlink-interface/raw-imu.html

libraries/SITL/SITL.cpp:1514: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 203 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/SITL/SITL.cpp#L1514

RECEIVE ONLY

SYSTEM

AUTOPILOT_VERSION_REQUEST (ID 183) SUPPORTED (RX ONLY)

Summary

Request the AUTOPILOT_VERSION message from the vehicle.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives request and responds with version info.

Reception (RX)

Handled by GCS_MAVLINK::handle_send_autopilot_version .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

1. GCS sends AUTOPILOT_VERSION_REQUEST (optionally specifying target system/component).
2. Vehicle checks if the request is for itself.
3. Vehicle responds with AUTOPILOT_VERSION (148).

Data Fields

target_system : System ID.
target_component : Component ID.

Practical Use Cases

1. Connecting to GCS:

Scenario: Mission Planner connects to the drone.
Action: It sends this request to determine firmware version, board capabilities, and custom
version tags (Git hash).

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4244: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 204 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/autopilot-version.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4244
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

NAMED_VALUE_INT (ID 252) SUPPORTED (RX ONLY)

Summary

Key-value pair of a string name and an integer value.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): Copter (Toy Mode) - Receives control events.

Reception (RX)

Handled by ToyMode::handle_message in ArduCopter. Used for interactions with specific "Toy" controllers
(SkyViper).

Source: ArduCopter/GCS_Mavlink.cpp

Data Fields

time_boot_ms : Timestamp.
name : Name string (10 chars max).
value : Int value.

Practical Use Cases

1. Toy Controller Buttons:

Scenario: A SkyViper controller button is pressed.
Action: It sends a NAMED_VALUE_INT (e.g., "BTN_A", 1). ArduPilot receives this and triggers a
flip or mode change.

Key Codebase Locations

ArduCopter/GCS_Mavlink.cpp:1511: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 205 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L1511

SETUP_SIGNING (ID 256) SUPPORTED (RX ONLY)

Summary

Setup a secret key for MAVLink packet signing.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives new signing key.

Reception (RX)

Handled by GCS_MAVLink::handle_setup_signing .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Sets the 32-byte secret key and the initial timestamp. This enables cryptographic authentication of MAVLink
packets.

Data Fields

target_system : System ID.
target_component : Component ID.
secret_key : 32-byte secret key.
initial_timestamp : Initial timestamp.

Practical Use Cases

1. Securing the Link:

Scenario: Preventing hijacking.
Action: GCS generates a key and sends SETUP_SIGNING . The drone now ignores commands
that aren't signed with this key.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4181: Handler.

TELEMETRY

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 206 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4181
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-signing-security.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

RADIO_STATUS (ID 109) SUPPORTED (RX ONLY)

Summary

Status reports from a 3DR/SiK-compatible telemetry radio.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Processed for link quality and flow control.

Reception (RX)

Handled by GCS_MAVLINK::handle_radio_status . This message is functionally identical to RADIO (166) in
ArduPilot's handling logic.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

See RADIO (166). The handler updates RSSI and TX Buffer stats to perform adaptive flow control.

Data Fields

rssi : Local signal strength.
remrssi : Remote signal strength.
txbuf : Transmit buffer remaining \%.
noise : Background noise.
remnoise : Remote background noise.
rxerrors : Receive errors.
fixed : Corrected packets.

Practical Use Cases

1. Telemetry Health:

Scenario: Monitoring link quality.
Action: GCS uses remrssi to show the signal bars for the drone's radio.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:862: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 207 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-flow-control.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L862

RADIO (ID 166) SUPPORTED (RX ONLY)

Summary

Status reports from a 3DR/SiK-compatible telemetry radio. These messages are typically generated locally
by the telemetry radio firmware and injected into the autopilot's serial stream to report link quality and
buffer status.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - ArduPilot parses this message to monitor link quality and perform
adaptive flow control.

Reception (RX)

ArduPilot processes this message in GCS_MAVLINK::handle_radio_status . The primary use is Adaptive
Flow Control. The system monitors the radio's transmit buffer (txbuf) to dynamically adjust the rate at
which MAVLink streams are sent.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

1. RSSI Tracking: Updates last_radio_status.rssi and last_radio_status.remrssi (Remote
RSSI).

2. Flow Control: Checks packet.txbuf (Remaining Free Space \%):
< 20\%: Radio buffer full. Increases stream_slowdown_ms significantly (slows down
telemetry).
< 50\%: Radio buffer getting full. Increases stream_slowdown_ms slightly.
> 95\%: Buffer empty. Decreases stream_slowdown_ms significantly (speeds up telemetry).
> 90\%: Buffer mostly empty. Decreases stream_slowdown_ms slightly.

3. Logging: Writes a RAD (Radio) log entry to the onboard SD card dataflash log.

Data Fields

rssi : Local signal strength (0-255). Often scaled to percentage.
remrssi : Remote signal strength (0-255).
txbuf : Remaining free space in the radio's transmit buffer (0-100\%).
noise : Background noise level.
remnoise : Remote background noise level.
rxerrors : Count of receive errors.
fixed : Count of corrected packets.

Practical Use Cases

1. Telemetry Link Optimization:

Scenario: User is flying at long range with a SiK telemetry radio.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 208 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-flow-control.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L862
https://mavlinkhud.com/field-manual/mavlink-interface/log-entry.html

Action: As the radio link degrades or the bandwidth saturates, the radio reports low txbuf .
ArduPilot automatically throttles the stream rate (Hz) of attitude/GPS updates to prevent
packet loss and latency buildup.

2. Link Quality Monitoring:

Scenario: Post-flight analysis of a mission.
Action: The user reviews the RAD log messages to see a graph of RSSI vs Distance, helping
to verify antenna placement and noise floor issues.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:862: handle_radio_status implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 209 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

DATA96 (ID 172) SUPPORTED (RX ONLY)

Summary

Generic 96-byte data packet. In ArduPilot, this is used to receive firmware update data and test commands
for the AP_Radio system from a Ground Control Station.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - ArduPilot receives this from the GCS and forwards it to the AP_Radio
driver.

Reception (RX)

ArduPilot processes this message in GCS_MAVLINK::handle_data_packet .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

The handler inspects the type field:

Type 42: Firmware Upload. Passed to AP_Radio::handle_data_packet .
Type 43: Play Tune. Passed to AP_Radio .

Data Fields

type : Data type ID (42=FW Upload, 43=Play Tune).
len : Data length.
data : Raw data (96 bytes).

Practical Use Cases

1. Updating Radio Firmware:

Scenario: User uploads new firmware to the onboard telemetry radio via the GCS.
Action: The GCS sends DATA96 packets containing the binary. ArduPilot receives them and
flushes them to the radio hardware.

2. Radio Testing:

Scenario: Debugging radio speakers/buzzers.
Action: GCS sends a "Play Tune" command (Type 43) via DATA96 .

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3818: handle_data_packet implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 210 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3818
https://mavlinkhud.com/field-manual/mavlink-interface/play-tune.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html

LED_CONTROL (ID 186) SUPPORTED (RX ONLY)

Summary

Control the color and pattern of onboard RGB LEDs (e.g., NeoPixel, Toshiba LEDs).

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives commands to set LED state.

Reception (RX)

Handled by AP_Notify::handle_led_control .

Source: libraries/AP_Notify/AP_Notify.cpp

Protocol Logic

Passed to the AP_Notify library, which overrides the standard status LED patterns.

Patterns: Solid, Blink, Flash.
Colors: RGB bytes.

Data Fields

target_system : System ID.
target_component : Component ID.
instance : LED instance (0 for all).
pattern : Pattern ID (0=Solid, 1=Custom, etc.).
custom_len : Custom pattern length.
custom_bytes : Custom pattern data.

Practical Use Cases

1. Light Shows / Swarming:

Scenario: A swarm of drones performs a night show.
Action: The central computer sends LED_CONTROL messages to change the color of each
drone in sync with the music.

Key Codebase Locations

libraries/AP_Notify/AP_Notify.cpp:475: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 211 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Notify/AP_Notify.cpp#L475
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

PLAY_TUNE (ID 258) SUPPORTED (RX ONLY)

Summary

Command the vehicle to play a musical tune on its buzzer and/or ESCs.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives tune commands.

Reception (RX)

Handled by AP_Notify::handle_play_tune .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Parses the tune string (formatted in the "Play string" format, e.g., "A B C") and queues it for playback.

Data Fields

target_system : System ID.
target_component : Component ID.
tune : Tune string (30 chars max).
tune2 : Extension string (200 chars).

Practical Use Cases

1. Lost Model Finder:
Scenario: Drone lands in tall grass.
Action: GCS sends PLAY_TUNE with a loud, repetitive beep sequence to help the pilot locate
it.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4346: Handler.

SENSORS

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 212 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4346
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

GPS_INJECT_DATA (ID 123) RX ONLY

Summary

The GPS_INJECT_DATA message carries RTCM correction data sent from a ground-based RTK Base Station
(via the GCS) to the vehicle. This data is injected into the onboard GPS receiver to enable Real-Time
Kinematic (RTK) precision (centimeter-level accuracy).

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Receives RTCM corrections)

Reception (RX)

Reception is handled by AP_GPS::handle_gps_inject within libraries/AP_GPS/AP_GPS.cpp:1236.

Protocol Logic

1. Extraction: The message payload (data) and length (len) are extracted.
2. Routing: The data is passed to handle_gps_rtcm_fragment , which routes the raw RTCM bytes to
the configured GPS instances.

3. Forwarding: Drivers like AP_GPS_UBLOX write these bytes directly to the GPS module's UART port.

Data Fields

target_system : System ID.
target_component : Component ID.
len : Data length (bytes).
data : Raw data (up to 110 bytes).

Practical Use Cases

1. RTK Positioning:

Scenario: A survey drone uses a Here3+ GPS.
Action: Mission Planner connects to a local Base Station (via USB or NTRIP). It packages the
RTCM stream into GPS_INJECT_DATA messages and sends them to the drone over the
telemetry link. The drone achieves "RTK Fixed" status.

Key Codebase Locations

libraries/AP_GPS/AP_GPS.cpp:1236: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 213 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS.cpp#L1236
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS.cpp#L1236

LANDING_TARGET (ID 149) RX ONLY

Summary

The LANDING_TARGET message is sent by a companion computer or smart camera to the autopilot. It
contains the location of a landing target (like an IR beacon or AprilTag) relative to the vehicle. This data
drives the Precision Landing feature.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Enables Precision Landing)

Reception (RX)

Reception is handled by AC_PrecLand_Companion::handle_msg within

libraries/AC_PrecLand/AC_PrecLand_Companion.cpp:22.

Protocol Logic

1. Frame Check: ArduPilot expects frame to be MAV_FRAME_BODY_FRD if position_valid is set.
2. Position Parsing:

If position_valid=1 : Uses x , y , z (meters) to calculate a Line-of-Sight (LOS) vector.
If position_valid=0 : Uses angle_x and angle_y (radians) to compute the LOS vector.

3. Timestamp: The time_usec is jitter-corrected to match the autopilot's time base.
4. Usage: The calculated LOS vector is fed into the Precision Landing EKF to estimate the target's
position and velocity relative to the vehicle.

Data Fields

time_usec : Timestamp (micros).
target_num : Target ID.
frame : Coordinate frame (MAV_FRAME).
angle_x : X-axis angular offset (radians).
angle_y : Y-axis angular offset (radians).
distance : Distance to the target (meters).
size_x : Size of target along x-axis (radians).
size_y : Size of target along y-axis (radians).
x : X position (meters).
y : Y position (meters).
z : Z position (meters).
q : Quaternion of landing target orientation.
type : Type of landing target (LANDING_TARGET_TYPE).
position_valid : Boolean indicating validity of x/y/z.

Practical Use Cases

1. IR Lock:
Scenario: A copter has an IR-Lock camera.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 214 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_PrecLand/AC_PrecLand_Companion.cpp#L22

Action: The IR-Lock driver (onboard or external) detects a beacon and streams
LANDING_TARGET messages. The copter adjusts its descent to land precisely on the beacon.

2. Vision-Based Landing:
Scenario: A Raspberry Pi runs OpenCV to track an AprilTag.
Action: The Pi sends LANDING_TARGET messages with the tag's relative position. ArduPilot
guides the vehicle onto the tag.

Key Codebase Locations

libraries/AC_PrecLand/AC_PrecLand_Companion.cpp:22: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 215 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_PrecLand/AC_PrecLand_Companion.cpp#L22

GPS_INPUT (ID 232) SUPPORTED (RX ONLY)

Summary

Inject raw GPS data into the autopilot. This allows a companion computer or external system to act as a
virtual GPS sensor.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives external GPS data.

Reception (RX)

Handled by AP_GPS::handle_msg . The data is fed into the AP_GPS_MAV backend.

Source: libraries/AP_GPS/AP_GPS_MAV.cpp

Protocol Logic

The autopilot treats this message as a reading from a physical GPS connected via MAVLink.

Time: Must be synced or corrected.
Flags: Indicate valid fields.

Data Fields

time_usec : Timestamp.
gps_id : ID of the GPS sensor (0-3).
ignore_flags : Flags for ignored fields.
lat : Latitude.
lon : Longitude.
alt : Altitude.
hdop : HDOP.
vdop : VDOP.
speed_accuracy : Speed accuracy.
horiz_accuracy : Horizontal accuracy.
vert_accuracy : Vertical accuracy.
satellites_visible : Sat count.

Practical Use Cases

1. Visual Odometry Bridge:

Scenario: A companion computer runs VIO (Visual Inertial Odometry).
Action: It converts VIO poses into GPS_INPUT messages so the flight controller can fly in
"Loiter" mode without a real GPS.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 216 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS_MAV.cpp#L46
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html

libraries/AP_GPS/AP_GPS_MAV.cpp:46: Handler.

GPS_RTCM_DATA (ID 233) SUPPORTED (RX ONLY)

Summary

RTCM Real-Time Kinematic (RTK) corrections.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives RTK corrections.

Reception (RX)

Handled by AP_GPS::handle_msg .

Source: libraries/AP_GPS/AP_GPS.cpp

Protocol Logic

The autopilot receives these fragments of RTCMv3 data from the GCS (typically from an NTRIP caster or a
local base station) and forwards them to the onboard GPS unit via I2C or Serial to enable RTK Fixed/Float
modes.

fragmentation: Max 180 bytes per message. Large RTCM packets are split across multiple
messages.

Data Fields

flags : Fragmentation flags.
len : Data length.
data : RTCM data bytes.

Practical Use Cases

1. Centimeter-Level Positioning:

Scenario: Surveying mission.
Action: GCS connects to a CORS network and streams GPS_RTCM_DATA to the drone. The
drone's GPS uses this to achieve 2cm accuracy.

Key Codebase Locations

libraries/AP_GPS/AP_GPS.cpp:1253: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 217 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_GPS/AP_GPS.cpp#L1253
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

OBSTACLE_DISTANCE (ID 330) RX ONLY

Summary

The OBSTACLE_DISTANCE message carries 2D radial distance measurements from a 360-degree sensor
(typically a spinning LIDAR or a ring of sonar/ToF sensors). It reports obstacles as an array of distances
relative to the vehicle's heading.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Consumes sensor data for Obstacle Avoidance)

Reception (RX)

ArduPilot parses this message to populate its internal Proximity database, which in turn drives the
Avoidance library (Simple Avoidance, BendyRuler, etc.).

Core Logic

The handler is implemented in AP_Proximity_MAV::handle_obstacle_distance_msg within

libraries/AP_Proximity/AP_Proximity_MAV.cpp:120.

1. Parsing: It reads the distances[] array and the increment (angular width of each sector).
2. Filtering: It validates each reading against min_distance and max_distance .
3. Fusion: The valid points are pushed into the 3D Proximity Boundary (frontend.boundary) and the
Object Avoidance Database (database_push).

4. Correction: It applies any user-configured PRX_YAW_CORR or PRX_ORIENT offsets to align the
sensor data with the vehicle frame.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
sensor_type : Class id of the distance sensor type.
distances : Distance of obstacles around the UAV with index 0 corresponding to local North +
angle_offset, unless otherwise specified in the frame field.
increment : Angular width in degrees of each array element.
min_distance : Minimum distance the sensor can measure in centimeters.
max_distance : Maximum distance the sensor can measure in centimeters.
increment_f : Angular width in degrees of each array element.
angle_offset : Relative angle offset of the 0-index element in the array.
frame : Coordinate frame of reference for the yaw rotation and offset of the sensor data.

Practical Use Cases

1. 360 LIDAR Avoidance:

Scenario: A drone is equipped with an RP-LIDAR A2.
Action: A companion computer (Raspberry Pi running ROS) reads the LIDAR, converts the
point cloud into an OBSTACLE_DISTANCE array, and sends it to the flight controller. ArduPilot

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 218 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/object-avoidance/simple-avoidance.html
https://mavlinkhud.com/field-manual/object-avoidance/bendyruler-algorithm.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Proximity/AP_Proximity_MAV.cpp#L120
https://mavlinkhud.com/field-manual/mavlink-interface/distance-sensor.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html

uses this to stop the drone before it hits a wall ("Simple Avoidance").

Key Codebase Locations

libraries/AP_Proximity/AP_Proximity_MAV.cpp:120: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 219 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Proximity/AP_Proximity_MAV.cpp#L120

ODOMETRY (ID 331) RX ONLY

Summary

The ODOMETRY message is a high-bandwidth packet designed to communicate visual odometry or VIO
(Visual Inertial Odometry) data to the Autopilot. It is primarily used to provide external navigation data
(Position, Velocity, Attitude) to the EKF3 when GPS is unavailable (e.g., indoor flight).

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Consumes VIO data for EKF fusion)

Reception (RX)

ArduPilot acts as a consumer of this message, typically from a Companion Computer running ROS or a
smart camera (like Realsense T265 or ModalAI VOXL).

Core Logic

The handler is implemented in GCS_MAVLINK::handle_odometry within

libraries/GCS_MAVLink/GCS_Common.cpp:3882.

Strict Frame Requirements

ArduPilot is very strict about the coordinate frames used in this message. If these fields do not match
exactly, the message is silently ignored:

frame_id MUST be MAV_FRAME_LOCAL_FRD (20).
child_frame_id MUST be MAV_FRAME_BODY_FRD (12).

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
frame_id : Coordinate frame of reference for the pose data.
child_frame_id : Coordinate frame of reference for the velocity data.
x : X Position (meters).
y : Y Position (meters).
z : Z Position (meters).
q : Quaternion components, w, x, y, z (1 0 0 0 is the null-rotation).
vx : X Linear velocity (m/s).
vy : Y Linear velocity (m/s).
vz : Z Linear velocity (m/s).
rollspeed : Roll angular speed (rad/s).
pitchspeed : Pitch angular speed (rad/s).
yawspeed : Yaw angular speed (rad/s).
pose_covariance : Pose covariance matrix upper right triangle.
velocity_covariance : Velocity covariance matrix upper right triangle.
reset_counter : Estimate reset counter.
estimator_type : Type of estimator that is providing the odometry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 220 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3882

quality : Optional odometry quality metric as a percentage.

Practical Use Cases

1. Indoor Non-GPS Flight:

Scenario: A drone flying inside a warehouse using a Realsense T265.
Action: The companion computer reads the camera, converts the pose to MAVLink
ODOMETRY (ensuring FRD frames), and sends it to the flight controller. The EKF3 fuses this
data to hold position without GPS.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3882: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 221 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3882

VISION_POSITION_DELTA (ID 11011) RX ONLY

Summary

The VISION_POSITION_DELTA message reports the change in position (delta) and change in angle (delta) of
the vehicle frame since the last update. This is an alternative to providing absolute ODOMETRY and is often
easier for optical flow sensors or visual SLAM systems to calculate.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Consumes VIO data for EKF fusion)

Reception (RX)

ArduPilot consumes this message via the AP_VisualOdom library.

Core Logic

The handler is implemented in AP_VisualOdom_Backend::handle_vision_position_delta_msg within
libraries/AP_VisualOdom/AP_VisualOdom_Backend.cpp:41.

1. Rotation: It rotates the incoming delta vectors based on the VISO_ORIENT parameter (e.g., if the
camera is facing down or backward).

2. Fusion: It calls AP::[ahrs](/field-manual/mavlink-interface/ahrs.html)
().writeBodyFrameOdom to send the delta measurements to the EKF3.

Data Fields

time_usec : Timestamp (us since UNIX epoch).
time_delta_usec : Time since the last reported delta.
angle_delta : Change in angular position (roll, pitch, yaw) in radians.
position_delta : Change in position (x, y, z) in meters.
confidence : Confidence level (0-100\%).

Practical Use Cases

1. Optical Flow:

Scenario: A specialized optical flow sensor calculates the distance moved (delta) between
frames rather than an absolute position.
Action: The sensor sends VISION_POSITION_DELTA updates. The EKF integrates these deltas
to estimate velocity and hold position.

Key Codebase Locations

libraries/AP_VisualOdom/AP_VisualOdom_Backend.cpp:41: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 222 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/odometry.html
https://mavlinkhud.com/field-manual/sensor-architecture/optical-flow-sensors.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom_Backend.cpp#L41
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_VisualOdom/AP_VisualOdom_Backend.cpp#L41

OBSTACLE_DISTANCE_3D (ID 11037) RX ONLY

Summary

The OBSTACLE_DISTANCE_3D message provides the location of an obstacle as a 3D vector relative to the
vehicle's body frame. Unlike the 2D OBSTACLE_DISTANCE array, this message reports individual points in 3D
space, making it suitable for depth cameras (Realsense, OAK-D) that can detect obstacles above or below
the vehicle.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): Autopilot (Consumes sensor data for Avoidance)

Reception (RX)

ArduPilot acts as a consumer of this message, feeding the Proximity library.

Core Logic

The handler is implemented in AP_Proximity_MAV::handle_obstacle_distance_3d_msg within

libraries/AP_Proximity/AP_Proximity_MAV.cpp:215.

1. Frame Check: It strictly requires MAV_FRAME_BODY_FRD .
2. Batching: It accumulates points into a temporary boundary buffer. When the time_boot_ms
timestamp changes (indicating a new frame of data), the accumulated points are pushed to the main
3D boundary.

3. Mapping: It calculates the pitch and yaw of the obstacle vector to assign it to the correct sector in
the 3D spherical buffer.

Data Fields

time_boot_ms : Timestamp (ms since boot). All points belonging to the same "frame" (e.g., depth
image) should share the same timestamp.
sensor_type : Class id of the distance sensor type.
frame : Coordinate frame (Must be MAV_FRAME_BODY_FRD).
obstacle_id : Unique ID of the obstacle (unused by ArduPilot).
x , y , z : Position of the obstacle in meters (FRD).
min_distance : Minimum distance the sensor can measure.
max_distance : Maximum distance the sensor can measure.

Practical Use Cases

1. Depth Camera Avoidance:

Scenario: A drone with a forward-facing Realsense D435.
Action: The companion computer processes the depth map. For every "close" pixel cluster, it
sends an OBSTACLE_DISTANCE_3D message. ArduPilot builds a local 3D map around the
vehicle and prevents the pilot from flying forward into the wall.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 223 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/obstacle-distance.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Proximity/AP_Proximity_MAV.cpp#L215
https://mavlinkhud.com/field-manual/mavlink-interface/distance-sensor.html

Key Codebase Locations

libraries/AP_Proximity/AP_Proximity_MAV.cpp:215: Implementation of the handler.

CONTROL

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 224 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Proximity/AP_Proximity_MAV.cpp#L215

SET_GPS_GLOBAL_ORIGIN (ID 48) SUPPORTED (RX ONLY)

Summary

Sets the GPS coordinates of the vehicle's local origin (0,0,0).

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives EKF origin data.

Reception (RX)

Handled by GCS_MAVLink::handle_set_gps_global_origin .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Used to manually set the EKF origin. This is crucial for non-GPS navigation (e.g., Optical Flow, Vicon) where
the vehicle needs a global reference frame to align with the real world or to "fake" a GPS lock at a specific
location.

Sets: AP::[ahrs](/field-manual/mavlink-interface/ahrs.html)().set_origin() .

Data Fields

target_system : System ID.
latitude : Latitude (deg * 1E7).
longitude : Longitude (deg * 1E7).
altitude : Altitude (mm).
time_usec : Timestamp.

Practical Use Cases

1. Indoor-Outdoor Transition:

Scenario: A drone takes off indoors (Vicon) and flies outdoors (GPS).
Action: The GCS or companion computer sets the global origin to the building's entrance
coordinates so the indoor local coordinates map correctly to global lat/lon.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4192: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 225 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4192
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

REQUEST_DATA_STREAM (ID 66) SUPPORTED (RX ONLY)

Summary

Request a data stream (e.g., "All", "Raw Sensors", "RC Channels").

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives stream requests.

Description

This message is Deprecated in favor of MAV_CMD_SET_MESSAGE_INTERVAL but remains widely supported for
legacy GCS compatibility.

Reception (RX)

Handled by GCS_MAVLINK::handle_request_data_stream .

Source: libraries/GCS_MAVLink/GCS_Param.cpp

Protocol Logic

The GCS requests a "Stream ID" (e.g., MAV_DATA_STREAM_EXTENDED_STATUS) and a rate (Hz). ArduPilot
maps this ID to a set of actual MAVLink messages and sets their transmission interval.

SRx_EXTRA1: Attitude, etc.
SRx_POSITION: GPS, Global Position.
SRx_RAW_SENSORS: Raw IMU.

Data Fields

target_system : System ID.
target_component : Component ID.
req_stream_id : ID of requested stream (0=All).
req_message_rate : Rate in Hz.
start_stop : 1 to start, 0 to stop.

Practical Use Cases

1. Connecting GCS:

Scenario: Mission Planner connects.
Action: It sends REQUEST_DATA_STREAM for "ALL" streams at defined rates to start the
telemetry flow.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 226 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/data-stream.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Param.cpp#L129
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/raw-imu.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

libraries/GCS_MAVLink/GCS_Param.cpp:129: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 227 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

MANUAL_CONTROL (ID 69) SUPPORTED (RX ONLY)

Summary

Raw manual control inputs (Joystick) from the GCS.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives joystick input.

Reception (RX)

Handled by GCS_MAVLINK::handle_manual_control .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Used for "Joystick" or "Virtual RC" control where the GCS sends control axes directly, rather than the RC
receiver.

Mapping: The X/Y/Z/R axes are mapped to Roll/Pitch/Throttle/Yaw (or similar) based on vehicle type
and mode.
Buttons: Button bits are decoded to trigger auxiliary functions (like arming, mode switching).

Data Fields

target : Target system.
x : X-axis (Pitch) -1000..1000.
y : Y-axis (Roll) -1000..1000.
z : Z-axis (Throttle) 0..1000.
r : R-axis (Yaw) -1000..1000.
buttons : 16-bit button mask.
buttons2 : Extension for more buttons.

Practical Use Cases

1. Flying via Tablet:

Scenario: User flies a drone using on-screen virtual joysticks in QGroundControl.
Action: QGC sends MANUAL_CONTROL messages. ArduPilot treats these as pilot input,
overriding (or replacing) the physical RC receiver.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:7038: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 228 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L7038

COMMAND_INT (ID 75) SUPPORTED (RX ONLY)

Summary

Send a command with up to seven parameters to the MAV. This is the preferred method for sending
commands that involve location data (Latitude/Longitude), as it uses integers for precision.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives commands.

Reception (RX)

Handled by GCS_MAVLINK::handle_command_int .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Decoding: Extracts the command ID (MAV_CMD) and parameters.
Routing: Dispatches to the appropriate handler (e.g., handle_MAV_CMD_DO_SET_ROI).
Frame: Explicitly handles the frame field (e.g., MAV_FRAME_GLOBAL_RELATIVE_ALT), which
COMMAND_LONG lacks.

Data Fields

target_system : System ID.
target_component : Component ID.
frame : Coordinate frame (MAV_FRAME).
command : Command ID (MAV_CMD).
current : (Not used).
autocontinue : (Not used).
param1 : Parameter 1 (float).
param2 : Parameter 2 (float).
param3 : Parameter 3 (float).
param4 : Parameter 4 (float).
x : Latitude/X (int32).
y : Longitude/Y (int32).
z : Altitude/Z (float).

Practical Use Cases

1. Region of Interest (ROI):
Scenario: User points the camera at a specific GPS coordinate.
Action: GCS sends COMMAND_INT (CMD: MAV_CMD_DO_SET_ROI) with the lat/lon in x / y .

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 229 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5643
https://mavlinkhud.com/field-manual/mavlink-interface/command-long.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

libraries/GCS_MAVLink/GCS_Common.cpp:5643: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 230 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

SET_ATTITUDE_TARGET (ID 82) SUPPORTED (RX ONLY)

Summary

Sets the vehicle's attitude (roll, pitch, yaw) and throttle target. Primary method for offboard control in
"Guided" mode.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives offboard control targets.

Reception (RX)

Handled by GCS_MAVLINK::handle_set_attitude_target .

Source: ArduCopter/GCS_Mavlink.cpp

Protocol Logic

Bitmask: The type_mask field determines which fields are ignored. ArduPilot supports various
combinations (e.g., Attitude only, Rates only, or mixed).

Input: Quaternions for attitude, for rates, 0..1 for thrust.
Mode: Requires vehicle to be in GUIDED (Copter) or similar offboard mode.

Data Fields

time_boot_ms : Timestamp.
target_system : System ID.
target_component : Component ID.
type_mask : Bitmap to ignore fields.
q : Attitude quaternion (w, x, y, z).
body_roll_rate : Roll rate (rad/s).
body_pitch_rate : Pitch rate (rad/s).
body_yaw_rate : Yaw rate (rad/s).
thrust : Collective thrust (0.0 to 1.0).

Practical Use Cases

1. Companion Computer Control:

Scenario: An onboard NVIDIA Jetson is flying the drone using a neural network.
Action: The Jetson sends SET_ATTITUDE_TARGET at 50Hz to control the drone's orientation
and thrust directly.

Key Codebase Locations

ArduCopter/GCS_Mavlink.cpp:1205: Handler.

rad/s

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 231 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L1495
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html

SET_POSITION_TARGET_LOCAL_NED (ID 84) SUPPORTED (RX ONLY)

Summary

Sets the vehicle's position, velocity, and/or acceleration target in a local North-East-Down (NED) frame.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives local offboard control targets.

Reception (RX)

Handled by GCS_MAVLINK::handle_set_position_target_local_ned .

Source: ArduCopter/GCS_Mavlink.cpp

Protocol Logic

Frame: Supports MAV_FRAME_LOCAL_NED , MAV_FRAME_LOCAL_OFFSET_NED , MAV_FRAME_BODY_NED ,
MAV_FRAME_BODY_OFFSET_NED .
Mask: type_mask ignores unused fields.
Control: Can control Position (XYZ), Velocity (XYZ), Acceleration (XYZ), and Yaw/YawRate.

Data Fields

time_boot_ms : Timestamp.
target_system : System ID.
target_component : Component ID.
coordinate_frame : Valid MAV_FRAME.
type_mask : Ignore flags.
x : X Position (m).
y : Y Position (m).
z : Z Position (m).
vx : X Velocity (m/s).
vy : Y Velocity (m/s).
vz : Z Velocity (m/s).
afx : X Acceleration (m/s^2).
afy : Y Acceleration (m/s^2).
afz : Z Acceleration (m/s^2).
yaw : Yaw angle (rad).
yaw_rate : Yaw rate (rad/s).

Practical Use Cases

1. Vision-Based Following:

Scenario: A drone tracks a person using a camera.
Action: The onboard computer calculates the relative vector to the person and sends velocity
commands (vx , vy) via SET_POSITION_TARGET_LOCAL_NED (Frame: MAV_FRAME_BODY_NED)

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 232 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L1498
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

to keep the person centered.

Key Codebase Locations

ArduCopter/GCS_Mavlink.cpp:1280: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 233 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

SET_POSITION_TARGET_GLOBAL_INT (ID 86) SUPPORTED (RX ONLY)

Summary

Sets the vehicle's position, velocity, and/or acceleration target in the Global frame (Latitude/Longitude).

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives global offboard control targets.

Reception (RX)

Handled by GCS_MAVLINK::handle_set_position_target_global_int .

Source: ArduCopter/GCS_Mavlink.cpp

Protocol Logic

Frame: Supports MAV_FRAME_GLOBAL_INT , MAV_FRAME_GLOBAL_RELATIVE_ALT_INT ,
MAV_FRAME_GLOBAL_TERRAIN_ALT_INT .
Precision: Uses integers (deg * 1E7) for Lat/Lon to prevent floating point errors.

Data Fields

time_boot_ms : Timestamp.
target_system : System ID.
target_component : Component ID.
coordinate_frame : MAV_FRAME.
type_mask : Ignore flags.
lat_int : Latitude.
lon_int : Longitude.
alt : Altitude (m).
vx : Velocity X.
vy : Velocity Y.
vz : Velocity Z.
afx : Accel X.
afy : Accel Y.
afz : Accel Z.
yaw : Yaw.
yaw_rate : Yaw Rate.

Practical Use Cases

1. Dynamic Re-tasking:

Scenario: Search and Rescue drone.
Action: Operator clicks a point on the map. The GCS sends a
SET_POSITION_TARGET_GLOBAL_INT to fly the drone to that specific coordinate in Guided
mode.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 234 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L1386
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Key Codebase Locations

ArduCopter/GCS_Mavlink.cpp:1386: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 235 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

FOLLOW_TARGET (ID 144) RX ONLY

Summary

The FOLLOW_TARGET message reports the kinematic state (position, velocity, attitude) of a target vehicle or
object that the drone should follow. This message is typically sent by a Ground Control Station (GCS) or a
companion computer acting as a "virtual beacon."

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Updates Follow Me target)

Reception (RX)

Reception is handled by AP_Follow::handle_follow_target_message within

libraries/AP_Follow/AP_Follow.cpp:374.

Protocol Logic

1. Validation: The message is ignored if the Lat/Lon are zero or if the est_capabilities bitmask
doesn't indicate valid position data.

2. Target Update:

Position: Lat, Lon, and Alt (AMSL) are updated.
Velocity: If provided (est_capabilities bit 1), the target's NED velocity is updated.
Heading: If attitude quaternion is provided (est_capabilities bit 3), the target's heading is
extracted.

3. Timestamping: The timestamp field is jitter-corrected to align the external time base with the
autopilot's boot time.

Data Fields

timestamp : Timestamp (ms since boot).
est_capabilities : Bitmask of valid fields (1: Pos, 2: Vel, 4: Accel, 8: Att).
lat : Latitude (deg * 1E7).
lon : Longitude (deg * 1E7).
alt : Altitude (meters AMSL).
vel : Velocity (m/s) in NED frame.
acc : Acceleration (m/s^2).
attitude_q : Attitude quaternion (w, x, y, z).
rates : Angular rates (rad/s).
position_cov : Position covariance.
custom_state : Custom state field.

Practical Use Cases

1. Computer Vision Tracking:

Scenario: A companion computer tracks a car using a camera.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 236 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Follow/AP_Follow.cpp#L374
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Action: It estimates the car's GPS coordinates and velocity, then streams FOLLOW_TARGET to
the flight controller. The drone flies in "Follow" mode, smoothly tracking the car.

2. Swarm Formation:
Scenario: Drone B follows Drone A.
Action: Drone A broadcasts its position (via GLOBAL_POSITION_INT or similar). The GCS or an
onboard script reformats this into FOLLOW_TARGET and sends it to Drone B.

Key Codebase Locations

libraries/AP_Follow/AP_Follow.cpp:374: Implementation of the handler.

MISSION

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 237 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Follow/AP_Follow.cpp#L374

MISSION_WRITE_PARTIAL_LIST (ID 38) SUPPORTED (RX ONLY)

Summary

Initiate a partial write transaction for mission items.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives partial upload request.

Reception (RX)

Handled by GCS_MAVLINK::handle_mission_write_partial_list .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Allows the GCS to update a specific range of waypoints (e.g., changing points 10-15 of a 100-point mission)
without re-uploading the entire list.

1. GCS sends MISSION_WRITE_PARTIAL_LIST .
2. Vehicle responds with MISSION_REQUEST for the first item in the range.

Data Fields

target_system : System ID.
target_component : Component ID.
start_index : Start index.
end_index : End index.

Practical Use Cases

1. In-Flight Mission Update:
Scenario: Pilot wants to move a few waypoints mid-mission.
Action: GCS uploads only the modified points using this message, saving bandwidth.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4513: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 238 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4513
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

MISSION_REQUEST (ID 40) SUPPORTED (RX ONLY)

Summary

Request the information of a mission item.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives request for item.

Reception (RX)

Handled by GCS_MAVLINK::handle_mission_request .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

This message is deprecated in favor of MISSION_REQUEST_INT (51) but is still supported for backward
compatibility.

ArduPilot converts it internally to a MISSION_REQUEST_INT and processes it.
A warning is sent to the GCS: "got MISSION_REQUEST; use MISSION_REQUEST_INT!".

Data Fields

target_system : System ID.
target_component : Component ID.
seq : Sequence number of the mission item.

Practical Use Cases

1. Legacy GCS Support:

Scenario: Connecting an old version of Mission Planner.
Action: It uses this message to download waypoints.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4529: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 239 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4529
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request-int.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html

MISSION_REQUEST_INT (ID 51) SUPPORTED (RX ONLY)

Summary

Request the information of a mission item with the sequence number seq .

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives request for a mission item.

Reception (RX)

Handled by GCS_MAVLINK::handle_mission_request_int .

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

1. GCS sends MISSION_REQUEST_INT with a sequence number.
2. ArduPilot retrieves the waypoint from storage.
3. ArduPilot responds with MISSION_ITEM_INT .

Data Fields

target_system : System ID.
target_component : Component ID.
seq : Sequence number of the mission item to fetch.
mission_type : Mission type (Mission, Fence, Rally).

Practical Use Cases

1. Downloading Mission:

Scenario: User clicks "Read" in Mission Planner.
Action: Mission Planner iterates through all waypoints, sending a MISSION_REQUEST_INT for
each one to download the plan from the drone.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:629: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 240 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L629
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item-int.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html

TERRAIN_DATA (ID 134) RX ONLY

Summary

The TERRAIN_DATA message carries a 4x4 grid of terrain height measurements. It is sent by the Ground
Control Station (GCS) to the vehicle in response to a TERRAIN_REQUEST .

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Updates terrain database)

Reception (RX)

Reception is handled by AP_Terrain::handle_terrain_data within
libraries/AP_Terrain/TerrainGCS.cpp:264.

Core Logic

1. Validation: It verifies that the incoming packet corresponds to a pending request in the internal grid
cache.

2. Population: It maps the 4x4 data block into the larger 8x7 internal grid structure.
3. Persistence: Once a grid is fully populated or sufficiently updated, it is marked as

GRID_CACHE_DIRTY , triggering a write to the SD card database.

Data Fields

lat : Latitude of grid (deg * 1E7).
lon : Longitude of grid (deg * 1E7).
grid_spacing : Grid spacing (in meters).
gridbit : Index of the 4x4 block within the larger grid.
data : Array of 16 int16_t values representing terrain height in meters.

Practical Use Cases

1. Offline Terrain Following:

Scenario: A user uploads a mission with TERRAIN_FRAME waypoints but the drone is not yet
flying.
Action: The GCS proactively pushes TERRAIN_DATA for the mission area to the drone. The
drone stores this on its SD card. During flight, even if telemetry is lost, the drone has the data
needed to fly safely close to the ground.

Key Codebase Locations

libraries/AP_Terrain/TerrainGCS.cpp:264: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 241 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/terrain-request.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L264
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Terrain/TerrainGCS.cpp#L264

RALLY_FETCH_POINT (ID 176) SUPPORTED (RX ONLY)

Summary

Request to fetch a specific rally point from the vehicle.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives request from GCS.

Reception (RX)

Handled by GCS_MAVLINK::handle_rally_fetch_point . The vehicle responds by sending a RALLY_POINT

message for the requested index.

Source: libraries/GCS_MAVLink/GCS_Rally.cpp

Protocol Logic

1. GCS sends RALLY_FETCH_POINT with idx .
2. Vehicle retrieves point at idx .
3. Vehicle replies with RALLY_POINT .

Data Fields

target_system : System ID.
target_component : Component ID.
idx : Index of the rally point to fetch.

Practical Use Cases

1. Downloading Safe Points:

Scenario: GCS connects to a drone and wants to display existing safe zones.
Action: GCS iterates through indices, sending RALLY_FETCH_POINT for each.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Rally.cpp:73: handle_rally_fetch_point implementation.

PAYLOAD

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 242 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/rally-point.html
https://mavlinkhud.com/field-manual/mavlink-interface/rally-point.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Rally.cpp#L73
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

DIGICAM_CONTROL (ID 155) RX ONLY

Summary

The DIGICAM_CONTROL message is a legacy method for controlling onboard cameras (taking photos,
zooming, etc.). It is largely deprecated in favor of the MAV_CMD_DO_DIGICAM_CONTROL command, but
ArduPilot still supports receiving this message for backward compatibility.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Triggers camera action)

Reception (RX)

Reception is handled by AP_Camera::handle_message within libraries/AP_Camera/AP_Camera.cpp:261.

Protocol Logic

1. Decoding: The message is decoded into a mavlink_digicam_control_t packet.
2. Action: The control() function is called with the unpacked parameters.
3. Triggering: If shot is 1, the camera shutter is triggered via the configured backend (Servo, Relay,
or MAVLink).

Data Fields

target_system : System ID.
target_component : Component ID.
session : Session control (e.g. show/hide lens).
zoom_pos : Zoom's absolute position.
zoom_step : Zooming step value to offset zoom from the current position.
focus_lock : Focus Locking, Unlocking or Re-locking.
shot : Shooting Command (1 to take a picture).
command_id : Command Identity.
extra_param : Extra parameter.
extra_value : Extra value.

Practical Use Cases

1. Legacy GCS Support:

Scenario: An older Ground Control Station only supports this message for camera triggering.
Action: When the user clicks "Trigger Camera", the GCS sends DIGICAM_CONTROL . ArduPilot
receives it and fires the relay to take a picture.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:261: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 243 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L261
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L261

GIMBAL_REPORT (ID 200) SUPPORTED (RX ONLY)

Summary

Status report from a 3DR Solo Gimbal (or compatible device).

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives status from the gimbal.

Reception (RX)

Handled by GCS_MAVLink and passed to AP_Mount .

Source: libraries/AP_Mount/AP_Mount.cpp

Protocol Logic

The AP_Mount library decodes the message to update its internal state of the gimbal's actual angles.

Note: This is specific to the "Solo Gimbal" protocol, which is distinct from the newer MAVLink
Gimbal Protocol v2 (GIMBAL_DEVICE_...).

Data Fields

target_system : System ID.
target_component : Component ID.
delta_time : Time since last update.
delta_angle_x : Delta angle X.
delta_angle_y : Delta angle Y.
delta_angle_z : Delta angle Z.
delta_velocity_x : Delta velocity X.
delta_velocity_y : Delta velocity Y.
delta_velocity_z : Delta velocity Z.
joint_roll : Joint angle roll.
joint_el : Joint angle elevation.
joint_az : Joint angle azimuth.

Practical Use Cases

1. Solo Gimbal Integration:

Scenario: Using a legacy 3DR Solo Gimbal.
Action: The gimbal reports its joint angles, allowing the autopilot to stabilize it or display its
orientation.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 244 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp#L996
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/flight-modes/copter-stabilize.html

libraries/AP_Mount/AP_Mount.cpp:996: Handler.

GOPRO_HEARTBEAT (ID 215) SUPPORTED (RX ONLY)

Summary

Heartbeat from a GoPro camera connected via a Solo Gimbal.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Detects GoPro presence.

Reception (RX)

Handled by GCS_MAVLink and used for routing logic.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Used to determine if a GoPro is connected and active on the gimbal link.

Data Fields

status : Status flags.
capture_mode : Current capture mode.
flags : Additional flags.

Practical Use Cases

1. Gimbal Integration:

Scenario: User turns on Solo drone.
Action: Autopilot receives GOPRO_HEARTBEAT and enables GoPro control widgets in the GCS.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4227: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 245 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/heartbeat.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4227

GIMBAL_DEVICE_INFORMATION (ID 283) RX ONLY

Summary

The GIMBAL_DEVICE_INFORMATION message provides static configuration data about a specific gimbal
device, such as its vendor name, model name, firmware version, and physical angular limits. In the MAVLink
Gimbal Protocol v2 architecture, this message is typically emitted by the Gimbal Device (the physical
hardware) and consumed by the Gimbal Manager (the Autopilot).

Status

RX Only

Directionality

TX (Transmit): None (ArduPilot typically does not generate this message).
RX (Receive): Autopilot (Receives from MAVLink Gimbals like Gremsy).

Reception (RX)

ArduPilot listens for this message to auto-configure its internal gimbal limits.

Core Logic

The handler is implemented in AP_Mount_Gremsy::handle_gimbal_device_information within

libraries/AP_Mount/AP_Mount_Gremsy.cpp:181.

1. Discovery: When a MAVLink gimbal connects, ArduPilot requests this message.
2. Configuration: It extracts roll_min , roll_max , pitch_min , pitch_max , etc., and updates the
internal AP_Mount parameters.

3. Propagation: These limits are then re-packaged and sent to the GCS via the
GIMBAL_MANAGER_INFORMATION message.

Data Fields

time_boot_ms : Timestamp (milliseconds since system boot).
vendor_name : Name of the gimbal vendor.
model_name : Name of the gimbal model.
custom_name : Custom name of the gimbal given to it by the user.
firmware_version : Version of the gimbal firmware, encoded as: (Dev & 0xff) << 24 | (Patch & 0xff)

<< 16 | (Minor & 0xff) << 8 | (Major & 0xff).
hardware_version : Version of the gimbal hardware, encoded as: (Dev & 0xff) << 24 | (Patch &

0xff) << 16 | (Minor & 0xff) << 8 | (Major & 0xff).
uid : UID of gimbal device (or 0 if not known).
cap_flags : Bitmap of gimbal capability flags.
custom_cap_flags : Bitmap of custom gimbal capability flags.
roll_min : Minimum hardware roll angle (positive: rolling to the right, negative: rolling to the left).
roll_max : Maximum hardware roll angle (positive: rolling to the right, negative: rolling to the left).
pitch_min : Minimum hardware pitch angle (positive: up, negative: down).
pitch_max : Maximum hardware pitch angle (positive: up, negative: down).
yaw_min : Minimum hardware yaw angle (positive: to the right, negative: to the left).
yaw_max : Maximum hardware yaw angle (positive: to the right, negative: to the left).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 246 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Gremsy.cpp#L181
https://mavlinkhud.com/field-manual/mavlink-interface/gimbal-manager-information.html

Practical Use Cases

1. Plug-and-Play Configuration:

Scenario: A user swaps a Gremsy T3 for a Gremsy Mio.
Action: The Autopilot receives GIMBAL_DEVICE_INFORMATION from the new gimbal, sees
different physical limits, and automatically updates its internal safety constraints without user
intervention.

Key Codebase Locations

libraries/AP_Mount/AP_Mount_Gremsy.cpp:181: Implementation of the handler.

LOGGING

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 247 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount_Gremsy.cpp#L181

LOG_REQUEST_LIST (ID 117) RX ONLY

Summary

The LOG_REQUEST_LIST message is sent by a Ground Control Station (GCS) to request a list of available
logs on the vehicle's DataFlash storage. The vehicle responds by streaming LOG_ENTRY messages for the
requested range.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Starts log listing)

Reception (RX)

Reception is handled by AP_Logger::handle_log_request_list within

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:68.

Protocol Logic

1. State Check: It checks if a log download is already in progress (_log_sending_link != nullptr).
If so, it rejects the request.

2. Range Setup: It parses the start and end log indices.
3. Sanitization: It clamps the range against the actual number of logs present (_log_num_logs).
4. Activation: It sets the transfer_activity state to TransferActivity::LISTING and assigns the
requesting link as the active channel. The scheduler then iteratively sends LOG_ENTRY messages.

Data Fields

target_system : System ID.
target_component : Component ID.
start : First log ID to list.
end : Last log ID to list.

Practical Use Cases

1. Log Browser:

Scenario: A user connects to the drone via USB and opens the "Download Logs" screen in
Mission Planner.
Action: The GCS sends LOG_REQUEST_LIST (start=0, end=0xFFFF) to get a full directory of
flight logs.

Key Codebase Locations

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:68: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 248 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/log-entry.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L68
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L68

LOG_REQUEST_DATA (ID 119) RX ONLY

Summary

The LOG_REQUEST_DATA message is sent by a Ground Control Station (GCS) to request a specific chunk of
data from a log file. It initiates or continues the download of a DataFlash log.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Starts/Continues log download)

Reception (RX)

Reception is handled by AP_Logger::handle_log_request_data within
libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:107.

Protocol Logic

1. State Check: Verifies if another download is active on a different channel.
2. Initialization: If this is a new request or a different log ID, it looks up the log's physical location on
storage (page/offset boundaries).

3. Range Setup: It sets the internal read pointer (_log_data_offset) to the requested offset (ofs)
and calculates the bytes remaining to send (count).

4. Activation: It transitions to the TransferActivity::SENDING state, which causes the scheduler to
pump LOG_DATA packets.

Data Fields

target_system : System ID.
target_component : Component ID.
id : Log ID (from LOG_ENTRY).
ofs : Offset into the log file (bytes).
count : Number of bytes to send.

Practical Use Cases

1. Downloading a Log:
Scenario: A user downloads a 10MB log.
Action: The GCS sends a sequence of LOG_REQUEST_DATA messages.

1. id=5, ofs=0, count=90 -> Receives LOG_DATA .
2. id=5, ofs=90, count=90 -> Receives LOG_DATA .
3. ...until EOF.

Key Codebase Locations

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:107: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 249 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L107
https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-entry.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L107

LOG_ERASE (ID 121) RX ONLY

Summary

The LOG_ERASE message is sent by a Ground Control Station (GCS) to command the vehicle to erase all
stored DataFlash logs.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Erases all logs)

Reception (RX)

Reception is handled by AP_Logger::handle_log_request_erase within
libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:165.

Protocol Logic

1. Decoding: The message is decoded (though it has no fields to use).
2. Action: The EraseAll() function is called on the logger backend. This typically reformats the SD
card or erases the flash chip, removing all logs.

Data Fields

target_system : System ID.
target_component : Component ID.

Practical Use Cases

1. Maintenance:

Scenario: A user wants to clear space on the SD card before a new mission.
Action: Clicking "Erase Logs" in the GCS sends this message.

Key Codebase Locations

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:165: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 250 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L165
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L165

LOG_REQUEST_END (ID 122) RX ONLY

Summary

The LOG_REQUEST_END message is sent by a Ground Control Station (GCS) to terminate a log transfer
session. This tells the vehicle to stop sending LOG_DATA or LOG_ENTRY messages and release any
resources associated with the transfer.

Status

RX Only

Directionality

TX (Transmit): None
RX (Receive): All Vehicles (Stops log transfer)

Reception (RX)

Reception is handled by AP_Logger::handle_log_request_end within

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:174.

Protocol Logic

1. State Reset: It sets transfer_activity to IDLE .
2. Resource Release: It clears the _log_sending_link pointer, allowing other MAVLink channels to
initiate log transfers.

3. Backend Notification: It calls end_log_transfer() on the active logger backend (e.g., to close the
file handle).

Data Fields

target_system : System ID.
target_component : Component ID.

Practical Use Cases

1. Cancel Download:

Scenario: A user realizes they selected the wrong log and clicks "Cancel" in the GCS.
Action: The GCS sends LOG_REQUEST_END , and the stream of LOG_DATA packets stops
immediately.

2. Download Complete:
Scenario: The GCS successfully receives the last byte of the log file.
Action: It sends LOG_REQUEST_END to politely close the session.

Key Codebase Locations

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:174: Implementation of the handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 251 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-entry.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L174
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L174

REMOTE_LOG_BLOCK_STATUS (ID 185) SUPPORTED (RX ONLY)

Summary

Status/Acknowledgment message for the Remote Logging protocol. Sent by the listener (e.g., companion
computer) to the autopilot.

Status

Supported (RX Only)

Directionality

TX (Transmit): None
RX (Receive): All Vehicles - Receives acks for sent log blocks.

Reception (RX)

Handled by AP_Logger::handle_remote_log_block_status .

Source: libraries/AP_Logger/AP_Logger.cpp

Protocol Logic

The autopilot maintains a buffer of sent blocks. It waits for this status message to confirm which blocks
have been safely received by the remote node.

Gap Filling: If the status indicates missing blocks, the autopilot re-sends them.

Data Fields

target_system : System ID.
target_component : Component ID.
seqno : Latest received sequence number.
status : Boolean/Enum status (1=OK).

Practical Use Cases

1. Reliable Log Streaming:
Scenario: Companion computer misses a packet due to CPU load.
Action: It sends REMOTE_LOG_BLOCK_STATUS with the last valid sequence number. ArduPilot
resends the missing data.

Key Codebase Locations

libraries/AP_Logger/AP_Logger.cpp:850: Handler.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 252 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger.cpp#L850
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

TRANSMIT ONLY

TELEMETRY

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 253 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

DATA16 (ID 169) SUPPORTED (TX ONLY)

Summary

Generic 16-byte data packet. In ArduPilot, this is used exclusively by the AP_Radio library to facilitate
firmware updates for attached telemetry radios (like the Cypress or CC2500 based radios).

Status

Supported (TX Only)

Directionality

TX (Transmit): Specific Driver (AP_Radio) - Sends firmware data chunks to the radio hardware.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message when performing a firmware upload to a connected telemetry radio.

Source: libraries/AP_Radio/AP_Radio_cc2500.cpp

Protocol Logic

The AP_Radio driver chunks the firmware binary and sends it using type 42 .

Type: 42 (Firmware Update).
Len: Length of data in bytes.
Data: Raw bytes.

Data Fields

type : Data type ID (42 for firmware upload).
len : Data length.
data : Raw data (16 bytes).

Practical Use Cases

1. Radio Firmware Update:

Scenario: A user initiates a radio firmware update via Mission Planner.
Action: ArduPilot acts as a bridge, receiving the firmware via MAVLink (likely in DATA96) and
writing it to the radio chip using DATA16 (or direct SPI/UART depending on the exact
hardware path, but DATA16 is the MAVLink encapsulation for this specific radio driver).
Correction: The search results show mavlink_msg_data16_send being called by the radio
driver. This suggests the autopilot might be sending data back to the GCS or to another
node? Actually, looking at the code mavlink_msg_data16_send(fwupload.chan... suggests
it's sending it out via MAVLink. If AP_Radio is the radio driver on the autopilot, it might be
reporting status or echoing data.

Re-reading code:
mavlink_msg_data16_send(fwupload.chan, 42, 4, data16);

It sends it to fwupload.chan . This is likely an ack or status back to the GCS during the update
process.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 254 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Radio/AP_Radio_cc2500.cpp#L1493
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/data96.html

Key Codebase Locations

libraries/AP_Radio/AP_Radio_cc2500.cpp:1493: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 255 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

AHRS2 (ID 178) SUPPORTED (TX ONLY)

Summary

Status of the secondary Attitude and Heading Reference System (AHRS) or EKF core.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends secondary EKF/AHRS state.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report the solution from the secondary estimation backend (e.g., EKF3
Core 1 if Core 0 is primary, or DCM if EKF is primary).

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

The system calls AP::ahrs().get_secondary_attitude() and get_secondary_position() . If valid, it
populates the message.

Role: Allows the GCS to monitor the health and divergence of the backup estimator.

Data Fields

roll : Roll angle (rad).
pitch : Pitch angle (rad).
yaw : Yaw angle (rad).
altitude : Altitude (meters).
lat : Latitude (deg * 1E7).
lng : Longitude (deg * 1E7).

Practical Use Cases

1. EKF Health Monitoring:

Scenario: A developer wants to see if the secondary EKF core is agreeing with the primary
core during a flight with magnetic interference.
Action: The GCS plots AHRS2.roll vs ATTITUDE.roll to check for divergence.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:587: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 256 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L587
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

BATTERY2 (ID 181) SUPPORTED (TX ONLY)

Summary

Voltage and current report for the secondary battery.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends secondary battery status.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report the status of the battery monitor at index 1 (the second battery).

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Queries AP::battery().voltage(1) and current_amps(1) .

Note: This message is considered legacy/deprecated in favor of BATTERY_STATUS (which supports
an ID field), but it is still actively sent for compatibility with older GCS implementations that expect a
dedicated "Battery 2" message.

Data Fields

voltage : Voltage (millivolts).
current_battery : Current (centiamps).

Practical Use Cases

1. Dual Battery Setup:

Scenario: A large drone has two independent LiPo batteries for redundancy.
Action: The GCS displays "Batt 1" (from SYS_STATUS) and "Batt 2" (from BATTERY2)
separately.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:2810: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 257 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-interface/battery-status.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L2810
https://mavlinkhud.com/field-manual/mavlink-interface/battery-status.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-interface/sys-status.html

MAG_CAL_PROGRESS (ID 191) SUPPORTED (TX ONLY)

Summary

Reports the progress of the onboard compass calibration process.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends calibration status.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message periodically while AP_Compass is in calibration mode.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Progress: 0-100\%.
Direction Mask: Bitmask of which orientations (North, South, Up, Down, etc.) have been
successfully sampled.
ID: Compass ID being calibrated.

Data Fields

compass_id : Compass instance/ID.
cal_mask : Bitmask of required orientations.
cal_status : Status flags.
attempt : Attempt number.
completion_pct : Completion percentage.
completion_mask : Bitmask of completed orientations.
direction_x/y/z : Current direction vector.

Practical Use Cases

1. Onboard Calibration:

Scenario: User initiates compass calibration via GCS.
Action: GCS displays a "dance" guide, highlighting which sides of the vehicle still need to be
presented to the sky/ground based on completion_mask .

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Streaming entry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 258 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1098

MAG_CAL_REPORT (ID 192) SUPPORTED (TX ONLY)

Summary

Reports the final results of the onboard compass calibration.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends final calibration offsets.
RX (Receive): None

Transmission (TX)

Sent once when calibration completes (success or failure).

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Contains the calculated hard-iron offsets, diagonals, and off-diagonals (soft iron), plus the "fitness" (error)
score.

Data Fields

compass_id : Compass instance/ID.
cal_mask : Calibration mask used.
cal_status : Final status (Success/Failed).
autosaved : True if parameters were saved.
fitness : Error score (lower is better).
ofs_x/y/z : Hard iron offsets.
diag_x/y/z : Soft iron diagonal scaling.
offdiag_x/y/z : Soft iron off-diagonal scaling.

Practical Use Cases

1. Calibration Verification:

Scenario: Calibration finishes.
Action: GCS displays the fitness score. If it's too high (e.g., > 10), the user knows the
calibration was poor (likely magnetic interference nearby) and should retry.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Streaming entry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 259 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1099

EKF_STATUS_REPORT (ID 193) SUPPORTED (TX ONLY)

Summary

Detailed health and status report of the Extended Kalman Filter (EKF).

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends EKF variance metrics.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report the "health" of the EKF fusion. This data drives the "EKF Status" /
"Vibe" HUD elements in Mission Planner.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

The system queries the active EKF core for the ratio of innovation to gate size (test ratio) for various
sensors.

Values < 1.0: Healthy (Consistency within expected noise).
Values > 1.0: Inconsistent (Sensor data conflicts with prediction).

Data Fields

flags : Flags indicating which sensors are active/fused.
velocity_variance : Velocity innovation test ratio.
pos_horiz_variance : Horizontal position innovation test ratio.
pos_vert_variance : Vertical position innovation test ratio.
compass_variance : Compass innovation test ratio.
terrain_alt_variance : Terrain altitude innovation test ratio.
airspeed_variance : Airspeed innovation test ratio.

Practical Use Cases

1. Pre-Arm Check:

Scenario: User tries to arm but gets "EKF Variance" error.
Action: GCS checks compass_variance . If high, it indicates magnetic interference or bad
calibration.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:1101: Streaming entry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 260 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-variance-innovations.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1101
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-variance-innovations.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

PID_TUNING (ID 194) SUPPORTED (TX ONLY)

Summary

Real-time PID controller data for tuning analysis.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends PID components.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message when GCS_PID_MASK is set to monitor a specific axis (e.g., Roll, Pitch, Yaw).

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Captures the internal state of the AC_PID controllers.

axis: enum (ROLL=1, PITCH=2, YAW=3, etc).
desired: Target rate/angle.
achieved: Actual rate/angle.
P/I/D/FF: Contribution of each term.

Data Fields

axis : Axis ID.
desired : Desired value.
achieved : Achieved value.
FF : Feed-Forward component.
P : Proportional component.
I : Integral component.
D : Derivative component.
SRate : Slew rate (optional).
PDmod : P/D modulation (optional).

Practical Use Cases

1. Tuning Optimization:

Scenario: User is manually tuning a racing drone.
Action: They enable PID logging for the Roll axis. The GCS graphs desired vs achieved
and the P/I/D terms in real-time, helping the user adjust gains to minimize overshoot.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:1102: Streaming entry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 261 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1102

DEEPSTALL (ID 195) SUPPORTED (TX ONLY)

Summary

Status of the Deep Stall landing controller (used by fixed-wing aircraft).

Status

Supported (TX Only)

Directionality

TX (Transmit): Plane - Sends landing status.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message when a deep stall landing is in progress.

Source: libraries/AP_Landing/AP_Landing_Deepstall.cpp

Protocol Logic

Reports the progress of the stall maneuver.

Stage: Estimate/Wait/Descend/Land.
Cross-track error: Distance from landing line.

Data Fields

landing_lat : Target latitude.
landing_lon : Target longitude.
path_lat : Path latitude.
path_lon : Path longitude.
arc_entry_lat : Arc entry latitude.
arc_entry_lon : Arc entry longitude.
altitude : Current altitude.
expected_travel_distance : Estimated distance to touch down.
cross_track_error : Deviation from path.
stage : Landing stage (FlyToArc, Arc, Approach, Land).

Practical Use Cases

1. Autonomous Landing:
Scenario: A plane performs a vertical deep-stall landing in a tight space.
Action: The GCS monitors the stage and cross_track_error to ensure the vehicle is
committed to the correct landing spot.

Key Codebase Locations

libraries/AP_Landing/AP_Landing_Deepstall.cpp:439: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 262 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Landing/AP_Landing_Deepstall.cpp#L439
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

HIGH_LATENCY2 (ID 235) SUPPORTED (TX ONLY)

Summary

optimized telemetry message designed for high-latency, low-bandwidth links (e.g., Iridium SBD, RockBlock,
LoRa).

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends condensed telemetry.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message periodically (default 5s) on links where MSG_HIGH_LATENCY2 is enabled.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Packs essential flight data (Mode, Battery, GPS, Attitude, Airspeed, Failsafes) into a single compact
message to minimize data usage and cost on satellite links.

Data Fields

timestamp : Time since boot.
type : Vehicle type.
autopilot : Autopilot type.
custom_mode : Flight mode.
latitude : Latitude.
longitude : Longitude.
altitude : Altitude.
target_altitude : Target altitude.
heading : Heading.
target_heading : Target heading.
target_distance : Distance to WP.
throttle : Throttle \%.
airspeed : Airspeed.
airspeed_sp : Airspeed setpoint.
groundspeed : Groundspeed.
windspeed : Windspeed.
wind_heading : Wind heading.
eph : GPS horizontal accuracy.
epv : GPS vertical accuracy.
temperature_air : Air temp.
climb_rate : Climb rate.
battery : Battery \%.
custom0/1/2 : Custom debug/user fields.
failure_flags : Bitmask of system failures.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 263 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/radio-control-link.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1139
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/field-manual/mavlink-interface/debug.html

Practical Use Cases

1. Beyond Visual Line of Sight (BVLOS):

Scenario: A glider flies 50km away, losing direct radio contact.
Action: It switches to Iridium satellite telemetry, sending one HIGH_LATENCY2 packet every 10
seconds to keep the operator informed of its position and battery without incurring high data
costs.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:1139: Streaming entry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 264 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html

EXTENDED_SYS_STATE (ID 245) SUPPORTED (TX ONLY)

Summary

Extended system state, primarily used for VTOL aircraft to report their flight state (transitioning, hovering,
flying fixed-wing) and landing status.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles (especially QuadPlane/VTOL) - Sends VTOL state.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to update the GCS on the specific state of a VTOL vehicle.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

vtol_state: MAV_VTOL_STATE (Undefined, Transitioning, MC, FW).
landed_state: MAV_LANDED_STATE (On Ground, In Air, Taking Off, Landing).

Data Fields

vtol_state : VTOL flight state.
landed_state : Landed state.

Practical Use Cases

1. VTOL Transition Monitoring:

Scenario: A QuadPlane takes off and transitions to forward flight.
Action: The GCS uses vtol_state to change the HUD symbology (e.g., from Copter style to
Plane style) during the transition.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:1121: Streaming entry.

SENSORS

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 265 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1121

GPS_GLOBAL_ORIGIN (ID 49) SUPPORTED (TX ONLY)

Summary

Publishes the GPS coordinates of the vehicle's local origin (0,0,0).

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends current EKF origin.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to confirm the EKF origin has been set or changed.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Queries AP::[ahrs](/field-manual/mavlink-interface/ahrs.html)().get_origin() and broadcasts it.

Trigger: Sent after SET_GPS_GLOBAL_ORIGIN is received or when the EKF initializes its origin (e.g.,
getting a 3D GPS lock).

Data Fields

latitude : Latitude (deg * 1E7).
longitude : Longitude (deg * 1E7).
altitude : Altitude (mm).
time_usec : Timestamp.

Practical Use Cases

1. Map Alignment:

Scenario: Drone is flying in "Guided NoGPS" mode.
Action: The GCS receives GPS_GLOBAL_ORIGIN and uses it to render the drone's position on
the map, even though the drone itself is only navigating using local meters relative to startup.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:3064: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 266 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L3064
https://mavlinkhud.com/field-manual/mavlink-interface/set-gps-global-origin.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

WIND (ID 168) SUPPORTED (TX ONLY)

Summary

Reports the estimated wind speed and direction. This data is derived from the EKF (Extended Kalman Filter)
or a dedicated wind vane sensor.

Status

Supported (TX Only)

Directionality

TX (Transmit): Copter, Plane, Blimp - Sends estimated wind vector.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report the wind estimate calculated by the AHRS/EKF or measured by
AP_WindVane .

Source: ArduCopter/GCS_Mavlink.cpp

Protocol Logic

The system retrieves the wind vector (x, y, z) from AP::ahrs().wind_estimate() and converts it to polar
coordinates (Direction, Speed) for transmission.

Direction: degrees(atan2f(-wind.y, -wind.x)) (Direction the wind is coming from).
Speed: wind.length() .
Vertical Speed: wind.z .

Data Fields

direction : Wind direction (0..360 degrees). 0 = North, 90 = East. Direction wind is coming from.
speed : Wind speed in m/s.
speed_z : Vertical wind speed in m/s.

Practical Use Cases

1. Situational Awareness:

Scenario: Pilot flying a Copter in loiter mode sees the vehicle leaning into the wind.
Action: The GCS displays the WIND message data, confirming a 15m/s headwind, helping the
pilot estimate battery consumption (fighting wind consumes more power).

2. Glider Operations:

Scenario: A glider pilot looks for thermals.
Action: The vertical wind speed component (speed_z) can indicate rising or sinking air
masses.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 267 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L1583
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

ArduCopter/GCS_Mavlink.cpp:1583: Copter sending implementation.
ArduPlane/GCS_Mavlink.cpp:317: Plane sending implementation.
libraries/AP_WindVane/AP_WindVane.cpp:432: Library implementation for vehicles with physical
wind sensors.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 268 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

RANGEFINDER (ID 173) SUPPORTED (TX ONLY)

Summary

Raw output from the primary downward-facing rangefinder (lidar/sonar).

Status

Supported (TX Only)

Directionality

TX (Transmit): Rover, Copter, Plane - Sends raw sensor data.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report the distance measured by the primary rangefinder.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

The system queries AP::rangefinder() for the primary instance's distance and voltage.

Distance: Converted to meters.
Voltage: Raw voltage from analog sensors (if applicable).

Data Fields

distance : Distance in meters.
voltage : Voltage in volts (for analog sensors).

Practical Use Cases

1. Precision Landing:

Scenario: Monitoring altitude during the final phase of a landing.
Action: The GCS displays the raw rangefinder data to verify the terrain height.

2. Obstacle Avoidance Tuning:

Scenario: Calibrating a forward-facing ranger.
Action: User checks if the reported distance matches the physical distance to an obstacle.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:507: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 269 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L507
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html

AIRSPEED_AUTOCAL (ID 174) SUPPORTED (TX ONLY)

Summary

Reports the status of the in-flight airspeed calibration algorithm.

Status

Supported (TX Only)

Directionality

TX (Transmit): Plane (and others with airspeed sensors) - Sends calibration metrics.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message when AP_AIRSPEED_AUTOCAL_ENABLE is true and an airspeed sensor is
calibrating.

Source: libraries/AP_Airspeed/Airspeed_Calibration.cpp

Protocol Logic

The AP_Airspeed library calculates the ratio between GPS ground speed and airspeed to estimate the ratio
error.

Ratio: The estimated ratio.
Diff/Scale: Error metrics (difference in X/Y/Z acceleration vs expected drag).

Data Fields

vx : Velocity X (m/s).
vy : Velocity Y (m/s).
vz : Velocity Z (m/s).
diff_pressure : Differential pressure (Pa).
EAS2TAS : Estimated True Airspeed ratio.
ratio : The calculated airspeed ratio.
state_x : Kalman filter state X.
state_y : Kalman filter state Y.
state_z : Kalman filter state Z.
pax : Positive acceleration X.
pby : Positive acceleration Y.
pcz : Positive acceleration Z.

Practical Use Cases

1. Calibration Verification:

Scenario: Pilot performs loiter circles to calibrate the airspeed sensor.
Action: The GCS plots ratio to see if it converges to a stable value.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 270 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/airspeed-sensors.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Airspeed/Airspeed_Calibration.cpp#L207
https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html

libraries/AP_Airspeed/Airspeed_Calibration.cpp:207: Sending implementation.

COMPASSMOT_STATUS (ID 177) SUPPORTED (TX ONLY)

Summary

Status of the compass motor interference calibration.

Status

Supported (TX Only)

Directionality

TX (Transmit): Copter - Sends calibration progress.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message during the CompassMot calibration process.

Source: ArduCopter/compassmot.cpp

Protocol Logic

As the user raises the throttle, the system measures magnetic interference.

throttle: Current throttle level.
current: Current draw (Amps).
interference: Magnitude of interference.

Data Fields

throttle : Throttle value (0-1000).
current : Current (Amps).
interference : Interference level (0-1000). 1000 = 100\% of max acceptable.
compensation_x : Compensation vector X.
compensation_y : Compensation vector Y.
compensation_z : Compensation vector Z.

Practical Use Cases

1. Compass/Motor Calibration:
Scenario: User performs the "CompassMot" procedure.
Action: GCS displays a live graph of interference vs throttle using this message.

Key Codebase Locations

ArduCopter/compassmot.cpp:222: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 271 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/compassmot.cpp#L222

RPM (ID 226) SUPPORTED (TX ONLY)

Summary

RPM (Revolutions Per Minute) from up to two sensors.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends RPM data.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report data from the AP_RPM library.

Source: libraries/GCS_MAVLink/GCS_Common.cpp

Protocol Logic

Queries AP::rpm() for the speed of the first two configured RPM sensors.

Data Fields

rpm1 : Speed of sensor 1 (RPM).
rpm2 : Speed of sensor 2 (RPM).

Practical Use Cases

1. Heli Rotor Speed:
Scenario: Helicopter pilot monitors head speed.
Action: GCS displays rpm1 (Main Rotor) and rpm2 (Tail Rotor).

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:1105: Streaming entry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 272 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1105

COLLISION (ID 247) SUPPORTED (TX ONLY)

Summary

Information about a potential collision with an object (or aircraft).

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends collision warning.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message when the AP_Avoidance library detects an impending collision (via ADSB or
other sensors).

Source: libraries/AP_Avoidance/AP_Avoidance.cpp

Protocol Logic

src: Source of threat (ADSB, MavLink, etc).
id: ID of threat.
action: Action taken (None, Report, Climb, Descend).
threat_level: Severity.
time_to_minimum_delta: Time until closest approach.
altitude_minimum_delta: Closest vertical distance.
horizontal_minimum_delta: Closest horizontal distance.

Data Fields

src : Source ID.
id : Threat ID.
action : Avoidance action.
threat_level : Threat level.
time_to_minimum_delta : Time to impact (seconds).
altitude_minimum_delta : Vertical miss distance (meters).
horizontal_minimum_delta : Horizontal miss distance (meters).

Practical Use Cases

1. Pilot Alert:
Scenario: Automatic avoidance triggers.
Action: GCS flashes a big red "COLLISION ALERT" warning based on this message, informing
the pilot why the drone just suddenly dove 10 meters.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 273 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/object-avoidance/adsb-collision-avoidance.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Avoidance/AP_Avoidance.cpp#L411
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

libraries/AP_Avoidance/AP_Avoidance.cpp:411: Sending implementation.

CONTROL

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 274 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

RC_CHANNELS_SCALED (ID 34) SUPPORTED (TX ONLY)

Summary

The scaled values of the RC channels.

Status

Supported (TX Only)

Directionality

TX (Transmit): Rover (and possibly others) - Sends scaled servo/motor outputs.
RX (Receive): None

Transmission (TX)

ArduRover sends this message to report the status of its motor outputs and control surfaces, scaled to
-10000 to +10000.

Source: Rover/GCS_Mavlink.cpp

Protocol Logic

Scaling: -100\% (-10000), 0\% (0), +100\% (10000).
Fields: Channels 1-8. Inactive channels set to UINT16_MAX.

Data Fields

time_boot_ms : Timestamp.
port : Servo output port (0 for primary).
chan1_scaled : Channel 1 scaled value.
chan2_scaled : Channel 2 scaled value.
chan3_scaled : Channel 3 scaled value.
chan4_scaled : Channel 4 scaled value.
chan5_scaled : Channel 5 scaled value.
chan6_scaled : Channel 6 scaled value.
chan7_scaled : Channel 7 scaled value.
chan8_scaled : Channel 8 scaled value.
rssi : Received Signal Strength Indicator (0-255).

Practical Use Cases

1. Rover Diagnostics:

Scenario: Debugging skid-steering mixing.
Action: GCS displays chan1_scaled (Left Throttle) and chan3_scaled (Right Throttle) to
verify the mixing logic.

Key Codebase Locations

Rover/GCS_Mavlink.cpp:133: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 275 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/Rover/GCS_Mavlink.cpp#L133

POSITION_TARGET_LOCAL_NED (ID 85) SUPPORTED (TX ONLY)

Summary

Reports the current commanded vehicle position, velocity, and acceleration in the local NED frame.

Status

Supported (TX Only)

Directionality

TX (Transmit): Copter, Plane, Rover - Sends current target state.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report what the autopilot is trying to achieve (the setpoint), which might
differ from the actual vehicle state (LOCAL_POSITION_NED).

Source: ArduCopter/GCS_Mavlink.cpp

Protocol Logic

Queries the active flight mode controller (e.g., pos_control) for its target position, velocity, and
acceleration.

Data Fields

time_boot_ms : Timestamp.
coordinate_frame : MAV_FRAME_LOCAL_NED.
type_mask : Bitmap of valid fields.
x : Target X (m).
y : Target Y (m).
z : Target Z (m).
vx : Target VX (m/s).
vy : Target VY (m/s).
vz : Target VZ (m/s).
afx : Target Accel X.
afy : Target Accel Y.
afz : Target Accel Z.
yaw : Target Yaw.
yaw_rate : Target Yaw Rate.

Practical Use Cases

1. Control Loop Analysis:

Scenario: Investigating "toilet bowling" (oscillation).
Action: GCS plots POSITION_TARGET_LOCAL_NED.x vs LOCAL_POSITION_NED.x . If the target
leads the actual position correctly, the navigator is fine. If the target oscillates wildly, the
navigation tuning is bad.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 276 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/local-position-ned.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L142
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html

ArduCopter/GCS_Mavlink.cpp:142: Sending implementation.

POSITION_TARGET_GLOBAL_INT (ID 87) SUPPORTED (TX ONLY)

Summary

Reports the current commanded vehicle position, velocity, and acceleration in the Global frame.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends current target state.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to report the current navigation target in global coordinates.

Source: ArduCopter/GCS_Mavlink.cpp

Data Fields

time_boot_ms : Timestamp.
coordinate_frame : MAV_FRAME.
type_mask : Bitmap of valid fields.
lat_int : Target Latitude.
lon_int : Target Longitude.
alt : Target Altitude (m).
vx : Target VX.
vy : Target VY.
vz : Target VZ.
afx : Target Accel X.
afy : Target Accel Y.
afz : Target Accel Z.
yaw : Target Yaw.
yaw_rate : Target Yaw Rate.

Practical Use Cases

1. Target Visualization:

Scenario: Autonomous mission.
Action: GCS draws a "Ghost Drone" on the map representing the
POSITION_TARGET_GLOBAL_INT . This shows where the drone wants to be vs where it is.

Key Codebase Locations

ArduCopter/GCS_Mavlink.cpp:109: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 277 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L109
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html

BUTTON_CHANGE (ID 257) SUPPORTED (TX ONLY)

Summary

Report a change in the state of a physical button connected to the autopilot.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles - Sends button events.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message when the AP_Button library detects a state change (press/release) on a
configured button pin.

Source: libraries/AP_Button/AP_Button.cpp

Data Fields

time_boot_ms : Timestamp.
last_change_ms : Time of last change.
state : New state (0=Released, 1=Pressed).

Practical Use Cases

1. Safety Switch Monitoring:

Scenario: User presses the safety button on the GPS mast.
Action: The GCS receives BUTTON_CHANGE , confirming the action.

Key Codebase Locations

libraries/AP_Button/AP_Button.cpp:355: Sending implementation.

PAYLOAD

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 278 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Button/AP_Button.cpp#L355

CAMERA_FEEDBACK (ID 180) SUPPORTED (TX ONLY)

Summary

precise location and attitude information for the moment a photo was taken. Crucial for aerial mapping and
photogrammetry.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles (with Camera enabled) - Sends trigger confirmation.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message whenever a camera trigger event is successfully logged (either by software
command or hardware hot-shoe feedback).

Source: libraries/AP_Camera/AP_Camera_Backend.cpp

Protocol Logic

When a photo is taken, AP_Camera records the vehicle's position (lat , lng , alt) and attitude (roll ,
pitch , yaw) at that exact timestamp. This data is then streamed to the GCS.

Hot Shoe: If hardware feedback is enabled, this message corresponds to the exact shutter close
time.
Open Loop: If no feedback, it corresponds to the trigger command time.

Data Fields

time_usec : Image timestamp (microseconds since boot).
target_system : System ID.
cam_idx : Camera ID.
img_idx : Image index (counter).
lat : Latitude (deg * 1E7).
lng : Longitude (deg * 1E7).
alt_msl : Altitude MSL (meters).
alt_rel : Relative Altitude (meters).
roll : Roll (degrees).
pitch : Pitch (degrees).
yaw : Yaw (degrees).
foc_len : Focal length (mm).
flags : Feedback flags (e.g., CAMERA_FEEDBACK_PHOTO).
completed_captures : Count of completed captures.

Practical Use Cases

1. Photogrammetry / Mapping:

Scenario: A drone flies a survey grid taking photos every 20 meters.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 279 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-trigger.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Backend.cpp#L205
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Action: The GCS records CAMERA_FEEDBACK messages to a log. Post-flight, this log is used to
geotag the images (Write EXIF data) with high precision, allowing for accurate 3D model
reconstruction.

Key Codebase Locations

libraries/AP_Camera/AP_Camera_Backend.cpp:205: Sending implementation.

GIMBAL_CONTROL (ID 201) SUPPORTED (TX ONLY)

Summary

Control message for the 3DR Solo Gimbal.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles (if Solo Gimbal configured) - Sends control demands.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message to command the gimbal's rate and orientation.

Source: libraries/AP_Mount/SoloGimbal.cpp

Protocol Logic

The AP_Mount_SoloGimbal driver converts user or autopilot demands (e.g., "Look Down") into rate
commands for the gimbal motors.

Data Fields

target_system : System ID.
target_component : Component ID.
demand : Demand vector (rate or angle).

Practical Use Cases

1. Gimbal Pointing:

Scenario: Pilot uses a slider to tilt the camera.
Action: ArduPilot sends GIMBAL_CONTROL commands to the gimbal to execute the movement.

Key Codebase Locations

libraries/AP_Mount/SoloGimbal.cpp:118: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 280 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/SoloGimbal.cpp#L118
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

LOGGING

LOG_ENTRY (ID 118) TX ONLY

Summary

The LOG_ENTRY message is a reply to a LOG_REQUEST_LIST (117) command. It provides metadata about a
single DataFlash log file on the vehicle, including its ID, size, and timestamp. The vehicle sends a stream of
these messages to list all available logs.

Status

TX Only

Directionality

TX (Transmit): All Vehicles (Log listing response)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by AP_Logger::handle_log_send_listing within

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:250.

Protocol Logic

1. Iteration: The logger iterates from start to end as requested by LOG_REQUEST_LIST .
2. Metadata Retrieval: For each log index, it calls get_log_info to retrieve the file size (bytes) and
UTC timestamp.

3. Completion: When the last entry is sent, the transfer activity state is reset to IDLE .

Data Fields

id : Log id.
num_logs : Total number of logs available.
last_log_num : High log number.
time_utc : UTC timestamp of log creation (seconds since 1970).
size : Log size in bytes.

Practical Use Cases

1. Log Browser:
Scenario: A user clicks "Download Logs" in Mission Planner.
Action: Mission Planner receives a stream of LOG_ENTRY messages and populates a table
showing Log ID, Date, and Size, allowing the user to select specific flights for download.

Key Codebase Locations

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:250: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 281 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/log-request-list.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L250
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L250

LOG_DATA (ID 120) TX ONLY

Summary

The LOG_DATA message carries a fixed-size chunk of binary data from a specific DataFlash log file. It is the
response to a LOG_REQUEST_DATA (119) message. A sequence of these messages constitutes a file
download.

Status

TX Only

Directionality

TX (Transmit): All Vehicles (Log content transfer)
RX (Receive): None (Ignored)

Transmission (TX)

Transmission is handled by AP_Logger::handle_log_send_data within

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:302.

Protocol Logic

1. Read: It reads len bytes (max 90) from the storage backend (File or Block) at the current
_log_data_offset .

2. Pack: It packs the data into the data array of the message.
3. Pad: If the read bytes are fewer than 90, the remaining bytes are zeroed out.
4. Send: The message is broadcast on the requesting channel.
5. Advance: The _log_data_offset is incremented. If the requested byte count is met or the end of
the log is reached, transmission stops (IDLE).

Data Fields

id : Log ID (1 through N).
ofs : Offset into the log file (bytes).
count : Number of bytes in this packet (typically 90).
data : Raw log data (90 bytes).

Practical Use Cases

1. Downloading a Log:
Scenario: Mission Planner is downloading a log.
Action: ArduPilot sends LOG_DATA packets rapidly. Mission Planner concatenates the data
fields to reconstruct the .BIN file on the user's disk.

Key Codebase Locations

libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp:302: Implementation of the sender.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 282 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/log-request-data.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L302
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLinkLogTransfer.cpp#L302

REMOTE_LOG_DATA_BLOCK (ID 184) SUPPORTED (TX ONLY)

Summary

A block of dataflash log data sent to a remote listener. This is part of the "Remote Logging" feature where
logs are streamed to a companion computer or GCS in real-time.

Status

Supported (TX Only)

Directionality

TX (Transmit): All Vehicles (if configured) - Sends log blocks.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message via AP_Logger_MAVLink when remote logging is enabled.

Source: libraries/AP_Logger/AP_Logger_MAVLink.cpp

Protocol Logic

The logger buffers log data and sends it in 200-byte chunks (blocks) to the MAVLink stream.

Reliability: The system expects REMOTE_LOG_BLOCK_STATUS acks to ensure data integrity.

Data Fields

target_system : System ID of listener.
target_component : Component ID of listener.
seqno : Sequence number (high/low or 32-bit index).
data : Log data block (200 bytes).

Practical Use Cases

1. Redundant Logging:

Scenario: A high-value drone operation requires logs to be saved on a companion computer
(Raspberry Pi) in case the flight controller is destroyed.
Action: The FC streams REMOTE_LOG_DATA_BLOCK messages to the Pi, which writes them to
disk.

Key Codebase Locations

libraries/AP_Logger/AP_Logger_MAVLink.cpp: Implementation.

SIMULATION

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 283 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Logger/AP_Logger_MAVLink.cpp#L569
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/remote-log-block-status.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html

SIM_STATE (ID 108) SUPPORTED (TX ONLY)

Summary

Status of the simulation environment (SITL).

Status

Supported (TX Only)

Directionality

TX (Transmit): SITL - Sends simulation ground truth.
RX (Receive): None

Transmission (TX)

ArduPilot sends this message when running in Software In The Loop (SITL) mode to report the "true"
physical state of the vehicle, bypassing sensor noise and estimation errors.

Source: libraries/SITL/SITL.cpp

Protocol Logic

q1-q4: True attitude quaternion.
roll/pitch/yaw/etc: True rates and positions.

Data Fields

q1 : Quaternion q1.
q2 : Quaternion q2.
q3 : Quaternion q3.
q4 : Quaternion q4.
roll : Roll angle (rad).
pitch : Pitch angle (rad).
yaw : Yaw angle (rad).
xacc : X acceleration (m/s^2).
yacc : Y acceleration (m/s^2).
zacc : Z acceleration (m/s^2).
xgyro : X angular speed (rad/s).
ygyro : Y angular speed (rad/s).
zgyro : Z angular speed (rad/s).
lat : Latitude (deg).
lon : Longitude (deg).
alt : Altitude (m).
std_dev_horz : Horizontal position standard deviation.
std_dev_vert : Vertical position standard deviation.
vn : Velocity North (m/s).
ve : Velocity East (m/s).
vd : Velocity Down (m/s).

Practical Use Cases

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 284 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/SITL/SITL.cpp#L1557
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

1. Estimation Analysis:

Scenario: Developing a new EKF.
Action: Developer compares SIM_STATE.roll (Truth) vs ATTITUDE.roll (Estimated) to
quantify the filter's performance.

Key Codebase Locations

libraries/SITL/SITL.cpp:1557: Sending implementation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 285 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html

UNSUPPORTED

SYSTEM

RESOURCE_REQUEST (ID 142) UNSUPPORTED

Summary

The RESOURCE_REQUEST message allows a component to request a specific resource (like a file, image, or
binary blob) from another component by URI.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot uses specific protocols for resource management:

1. FTP (FILE_TRANSFER_PROTOCOL): For file system access (logs, params, terrain).
2. Mission Protocol: For waypoints.
3. Parameter Protocol: For settings.

Intended Data Fields (Standard)

request_id : Request ID.
uri_type : The type of requested URI.
uri : The URI of the resource requested.
transfer_type : The transfer type.
storage : The storage ID.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 286 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/file-transfer-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html

LIMITS_STATUS (ID 167) UNSUPPORTED

Summary

Status of the legacy AP_Limits system. This module was the predecessor to the modern Geofence
system.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

This message is deprecated and no longer used in the ArduPilot codebase. It was previously used to report
the status of the AP_Limits module (safety limits), which has been superseded by the AC_Fence library
and messages like FENCE_STATUS .

Data Fields

limits_state : State of AP_Limits.
last_trigger : Time of last breach.
last_action : Action taken.
last_recovery : Recovery action.
last_clear : Time of last clear.
breach_count : Number of fence breaches.
mods_enabled : Bitmask of enabled modules.
mods_required : Bitmask of required modules.
mods_triggered : Bitmask of triggered modules.

Theoretical Use Cases

1. Legacy Fence Monitoring:

Scenario: Older versions of ArduPilot used this to indicate if the vehicle had breached a
geofence or altitude limit.
Alternative: Use FENCE_STATUS (162).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 287 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/fence-status.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

MEMORY_VECT (ID 249) UNSUPPORTED

Summary

Send raw memory content.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Debugging.

DEBUG_VECT (ID 250) UNSUPPORTED

Summary

Named vector debug data.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It prefers NAMED_VALUE_FLOAT .

Theoretical Use Cases

Debugging.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 288 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/debug.html
https://mavlinkhud.com/field-manual/mavlink-interface/named-value-float.html

DEBUG (ID 254) UNSUPPORTED

Summary

Generic debug message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Debugging.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 289 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

PROTOCOL_VERSION (ID 300) UNSUPPORTED

Summary

The PROTOCOL_VERSION message is designed to allow a MAVLink node to report the range of protocol
versions it supports (e.g., MAVLink 1.0 vs 2.0). ArduPilot does not currently implement or transmit this

message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

ArduPilot handles protocol versioning implicitly at the communication layer.

Discovery: Ground Control Stations detect the MAVLink version by inspecting the start-of-frame

byte (for v1.0, for v2.0).
Capabilities: Comprehensive capability and version reporting are handled by the
AUTOPILOT_VERSION (148) message, which ArduPilot fully supports.
Absence: There is no handler or sender for ID 300 in the GCS_MAVLink libraries.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Lacks a mapping for ID 300.

0xFE 0xFD

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 290 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/autopilot-version.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp

DEBUG_FLOAT_ARRAY (ID 350) UNSUPPORTED

Summary

The DEBUG_FLOAT_ARRAY message allows sending a large array of floating-point values for debugging
purposes. It is useful for dumping internal state vectors or matrices.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

For debugging, ArduPilot typically uses:

NAMED_VALUE_FLOAT (251): For key-value pairs.
STATUSTEXT (253): For text logs.
DEBUG_VECT (250): For 3D vectors.

Intended Data Fields (Standard)

time_usec : Timestamp.
name : Name ID.
array_id : Unique ID for the array.
data : Array of floats.

Theoretical Use Cases

1. Visualizing Internal State:

Scenario: Tuning a new neural network controller.
Action: The autopilot outputs the entire 64-float activation layer of the neural net via
DEBUG_FLOAT_ARRAY at 50Hz. A visualizer tool plots this heatmap in real-time, helping the
developer understand what features the network is activating on.

2. Spectral Analysis:

Scenario: In-flight vibration analysis.
Action: The autopilot performs an FFT on the gyro data and downlinks the frequency bins as
a float array. The engineer sees a spike at 80Hz and knows the props need balancing.

TELEMETRY

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 291 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/named-value-float.html
https://mavlinkhud.com/field-manual/mavlink-interface/statustext.html
https://mavlinkhud.com/field-manual/mavlink-interface/debug-vect.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html

ATTITUDE_QUATERNION_COV (ID 61) UNSUPPORTED

Summary

The attitude in the aeronautical frame, expressed as quaternion, with covariance.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It uses ATTITUDE_QUATERNION (31) or ATTITUDE (30) for
attitude reporting.

Theoretical Use Cases

Attitude reporting with uncertainty.

GLOBAL_POSITION_INT_COV (ID 63) UNSUPPORTED

Summary

The filtered global position with covariance.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It uses GLOBAL_POSITION_INT (33) for position reporting.

Theoretical Use Cases

Position reporting with uncertainty.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 292 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html

LOCAL_POSITION_NED_COV (ID 64) UNSUPPORTED

Summary

The filtered local position with covariance.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It uses LOCAL_POSITION_NED (32) for local position reporting.

Theoretical Use Cases

Local position reporting with uncertainty.

DATA_STREAM (ID 67) UNSUPPORTED

Summary

Data stream status information.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message (neither sending nor receiving).

Theoretical Use Cases

Reporting the status of a data stream.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 293 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/local-position-ned.html

LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET (ID 89) UNSUPPORTED

Summary

The LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET message is defined in MAVLink to provide the offset
between a local North-East-Down (NED) coordinate system and the global Latitude/Longitude frame.
ArduPilot does not implement or transmit this message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

ArduPilot handles the relationship between local and global coordinates internally within the EKF (Extended
Kalman Filter) and the AP_AHRS library. The origin of the local coordinate system is established relative to
the home position or a fixed global coordinate, and this mapping is exposed through other messages like
HOME_POSITION (242) and GLOBAL_POSITION_INT (33).

Absence: There is no handler for ID 89 in the GCS_MAVLink libraries.
Alternative: To find the relationship between local NED and global coordinates, a GCS should
compare LOCAL_POSITION_NED (32) against GLOBAL_POSITION_INT (33) or query the
HOME_POSITION (242).

Data Fields (Standard)

time_boot_ms : Timestamp (milliseconds since system boot).
x : X Position (meters).
y : Y Position (meters).
z : Z Position (meters).
roll : Roll (rad).
pitch : Pitch (rad).
yaw : Yaw (rad).

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Lacks a handler for ID 89.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 294 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/mavlink-interface/home-position.html
https://mavlinkhud.com/field-manual/mavlink-interface/home-position.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html
https://mavlinkhud.com/field-manual/mavlink-interface/local-position-ned.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp

ALTITUDE (ID 141) UNSUPPORTED

Summary

The ALTITUDE message provides a dedicated high-precision altitude report, separating monotonic
(continuous), AMSL (Above Mean Sea Level), local, relative, and terrain-relative altitudes. This message is
designed to resolve ambiguity between different altitude frames.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not currently broadcast this message.

Instead, ArduPilot reports altitude via:

1. GLOBAL_POSITION_INT (33): Contains alt (AMSL) and relative_alt (Above Home).
2. VFR_HUD (74): Contains alt (AMSL) for HUD displays.
3. TERRAIN_REPORT (136): Contains terrain height and current height above terrain.

Intended Data Fields (Standard)

time_usec : Timestamp (micros).
altitude_monotonic : Monotonic altitude (never resets).
altitude_amsl : Altitude above mean sea level.
altitude_local : Local altitude (relative to 0,0,0 origin).
altitude_relative : Relative altitude (above home).
altitude_terrain : Altitude above terrain.
bottom_clearance : Distance to bottom surface (ground/water).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 295 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html
https://mavlinkhud.com/field-manual/mavlink-interface/vfr-hud.html
https://mavlinkhud.com/field-manual/mavlink-interface/terrain-report.html

CONTROL_SYSTEM_STATE (ID 146) UNSUPPORTED

Summary

The CONTROL_SYSTEM_STATE message is defined in MAVLink to provide a unified, high-frequency "State
Vector" (Position, Velocity, Acceleration, Attitude, and Rates) to external controllers or companion
computers. ArduPilot does not implement or transmit this message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

ArduPilot prefers to send its state estimation data through individual, specialized messages that are better
integrated with its EKF (Extended Kalman Filter) architecture:

Orientation: ATTITUDE (30) or ATTITUDE_QUATERNION (31).
Position: LOCAL_POSITION_NED (32) or GLOBAL_POSITION_INT (33).
High-Frequency Data: HIGHRES_IMU (105).
Filter Health: EKF_STATUS_REPORT (ArduPilot Custom).

By using these discrete messages, ArduPilot ensures compatibility with a wider range of Ground Control
Stations and reduces the bandwidth required for users who only need a subset of the state data.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
x_acc : X acceleration in body frame.
y_acc : Y acceleration in body frame.
z_acc : Z acceleration in body frame.
x_vel : X velocity in body frame.
y_vel : Y velocity in body frame.
z_vel : Z velocity in body frame.
x_pos : X position in local frame.
y_pos : Y position in local frame.
z_pos : Z position in local frame.
airspeed : Airspeed.
vel_variance : Variance of velocity.
pos_variance : Variance of position.
q : The attitude, represented as Quaternion.
roll_rate : Angular rate in roll axis.
pitch_rate : Angular rate in pitch axis.
yaw_rate : Angular rate in yaw axis.

Key Codebase Locations

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 296 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/mavlink-interface/local-position-ned.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html
https://mavlinkhud.com/field-manual/mavlink-interface/highres-imu.html
https://mavlinkhud.com/field-manual/mavlink-interface/ekf-status-report.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-variance-innovations.html

libraries/GCS_MAVLink/GCS_Common.cpp: Lacks a handler or mapping for ID 146.

DATA32 (ID 170) UNSUPPORTED

Summary

Generic 32-byte data packet.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Generic data transmission.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 297 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp

DATA64 (ID 171) UNSUPPORTED

Summary

Generic 64-byte data packet.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Generic data transmission.

AHRS3 (ID 182) UNSUPPORTED

Summary

Status of a third AHRS/EKF core.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. Use AHRS2 for secondary status or standard
ATTITUDE / GLOBAL_POSITION_INT for primary status.

Theoretical Use Cases

Debugging a tertiary estimator.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 298 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs2.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html

ESTIMATOR_STATUS (ID 230) UNSUPPORTED

Summary

Estimator status report.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It uses EKF_STATUS_REPORT (193) for detailed estimator health.

Theoretical Use Cases

General estimator status.

HIGH_LATENCY (ID 234) UNSUPPORTED

Summary

Legacy high latency telemetry message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot supports HIGH_LATENCY2 (235) instead.

Theoretical Use Cases

Satellite telemetry.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 299 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/ekf-status-report.html
https://mavlinkhud.com/field-manual/mavlink-interface/high-latency2.html

V2_EXTENSION (ID 248) UNSUPPORTED

Summary

MAVLink v2 extension message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message directly.

Theoretical Use Cases

Protocol extension wrapper.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 300 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

FLIGHT_INFORMATION (ID 264) UNSUPPORTED

Summary

The FLIGHT_INFORMATION message is designed to provide high-level metadata about the current flight
session. Its primary purpose is to provide a unique identifier (UUID) for the flight, along with precise UTC
timestamps for the arming and takeoff events. This facilitates the automatic organization and

synchronization of flight logs across different systems (e.g., Drone vs. GCS vs. Cloud).

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot currently does not implement this message.

Flight UUIDs and arming timestamps are typically handled internally by the logging system (DataFlash /
.BIN logs) and are not broadcast over MAVLink in this specific format. Ground Control Stations generally
infer "New Flight" events by monitoring HEARTBEAT mode changes (e.g., Disarmed -> Armed) or
GLOBAL_POSITION_INT data.

Intended Data Fields (Standard)

time_boot_ms : Timestamp (ms since boot).
arming_time_utc : Timestamp at arming (us since UNIX epoch).
takeoff_time_utc : Timestamp at takeoff (us since UNIX epoch).
flight_uuid : Universally Unique Identifier (UUID) for the flight. This should ideally correspond to
the filename of the log file.

Theoretical Use Cases

1. Cloud Logging Sync:

Scenario: A drone uploads telemetry to a cloud service.
Action: The flight_uuid allows the cloud service to automatically group telemetry packets
into discrete "Flight" objects, even if the connection drops and reconnects.

2. Legal Compliance:
Scenario: Automated flight logging for commercial operations.
Action: The takeoff_time_utc provides a definitive, tamper-evident start time for the flight
log, useful for pilot logbooks.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 301 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/heartbeat.html
https://mavlinkhud.com/field-manual/mavlink-interface/global-position-int.html

WIFI_CONFIG_AP (ID 299) UNSUPPORTED

Summary

The WIFI_CONFIG_AP message is designed to configure the WiFi credentials (SSID and Password) of a
MAVLink-enabled WiFi Access Point or Station. It is intended for setting up telemetry radios or companion
computers without needing a physical USB connection.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

While ArduPilot supports networking via AP_Networking and PPP/Ethernet interfaces, the configuration of
WiFi credentials on external bridges (like ESP8266/ESP32 MAVLink bridges) is typically handled via their
own web interfaces or specific setup tools, not via this MAVLink message processed by the Flight
Controller.

Intended Data Fields (Standard)

ssid : Name of the WiFi network (up to 32 chars).
password : Password (up to 64 chars).
mode : WIFI_CONFIG_AP_MODE (AP, Station, Disabled).
response : WIFI_CONFIG_AP_RESPONSE (Accepted, Rejected, Error).

Theoretical Use Cases

1. Headless Provisioning:

Scenario: A user buys a new telemetry module.
Action: Instead of connecting a USB cable, they connect to the module's default hotspot. The
GCS sends WIFI_CONFIG_AP to instruct the module to join the user's home WiFi network
(Station Mode).

2. Field Reconfiguration:

Scenario: A drone swarm needs to change WiFi channels to avoid interference.
Action: The GCS broadcasts a new configuration to all drones simultaneously via MAVLink,
switching their onboard WiFi radios to a new SSID or frequency.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 302 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html

ISBD_LINK_STATUS (ID 335) UNSUPPORTED

Summary

The ISBD_LINK_STATUS message reports the status of an Iridium SBD (Short Burst Data) satellite link. This
includes signal quality, session status, and ring call alerts.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

While ArduPilot supports Iridium SBD modems (like the RockBlock) via the AP_IridiumSBD library, it does
not currently expose the link status via this specific MAVLink message. Status information is typically
logged internally or reported via STATUSTEXT messages.

Intended Data Fields (Standard)

timestamp : Timestamp.
last_heartbeat : Timestamp of last heartbeat.
failed_sessions : Number of failed sessions.
successful_sessions : Number of successful sessions.
signal_quality : Signal quality (0-5).
ring_pending : Ring alert pending.
tx_session_pending : TX session pending.
rx_session_pending : RX session pending.

Theoretical Use Cases

1. Link Troubleshooting:

Scenario: A BVLOS drone over the ocean stops reporting position.
Action: The last received ISBD_LINK_STATUS showed a signal quality of 0. This confirms the
issue was antenna obstruction or satellite coverage, rather than a system crash.

2. Cost Optimization:
Scenario: Satellite data is expensive per byte.
Action: The GCS monitors tx_session_pending and signal_quality . It only queues non-
critical telemetry uploads when signal_quality is 5/5, minimizing the chance of failed (but
billed) transmission attempts.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 303 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/statustext.html
https://mavlinkhud.com/field-manual/mavlink-interface/heartbeat.html

UTM_GLOBAL_POSITION (ID 340) UNSUPPORTED

Summary

The UTM_GLOBAL_POSITION message is used to report the vehicle's position to a UTM (Unmanned Traffic
Management) system. It includes secure authentication tokens (UAS ID) and flight state information.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

For Remote ID and traffic management compliance, ArduPilot uses the OpenDroneID protocol family:

OPEN_DRONE_ID_BASIC_ID (12900)
OPEN_DRONE_ID_LOCATION (12901)
OPEN_DRONE_ID_AUTHENTICATION (12902)
OPEN_DRONE_ID_SELF_ID (12903)
OPEN_DRONE_ID_SYSTEM (12904)
OPEN_DRONE_ID_OPERATOR_ID (12905)

Intended Data Fields (Standard)

time : Timestamp (us).
uas_id : Unique Aerial System ID (18 chars).
lat / lon / alt : Position (degE7, mm).
relative_alt : Altitude above home (mm).
vx / vy / vz : Velocity (cm/s).
h_acc / v_acc / vel_acc : Uncertainty (mm).
next_lat / next_lon / next_alt : Next waypoint.
update_rate : Update rate (cs).
flight_state : Flight state.
flags : Flags.

Theoretical Use Cases

1. Air Traffic Integration:

Scenario: A delivery drone enters controlled airspace.
Action: The drone transmits UTM_GLOBAL_POSITION to a networked UTM Service Provider
(USS). This provider forwards the position to Air Traffic Control, allowing them to see the
drone on their radar screens alongside manned aircraft.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 304 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-signing-security.html
https://mavlinkhud.com/field-manual/remote-id/core-concepts-and-regulations.html
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-basic-id.html
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-location.html
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-authentication.html
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-self-id.html
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-system.html
https://mavlinkhud.com/field-manual/mavlink-interface/open-drone-id-operator-id.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

SMART_BATTERY_INFO (ID 370) UNSUPPORTED

Summary

The SMART_BATTERY_INFO message provides static configuration and health info for a smart battery, such
as its capacity, chemistry, and cycle count.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot supports Smart Batteries (SMBus, DroneCAN) but maps their data into the standard
BATTERY_STATUS (147) message, which includes fields for voltages, current, temperature, and cell
voltages.

Intended Data Fields (Standard)

id : Battery ID.
capacity_full_specification : Capacity when new.
capacity_full : Current full capacity.
cycle_count : Number of discharge cycles.
weight : Weight.
discharge_minimum_voltage : Minimum voltage.
charging_minimum_voltage : Minimum charging voltage.
resting_minimum_voltage : Resting voltage.
charging_maximum_voltage : Max charging voltage.
cells_in_series : Serial cell count.
discharge_maximum_current : Max discharge current.
charging_maximum_current : Max charging current.
manufacture_date : Manufacture date.
serial_number : Serial number.
name : Name string.

Theoretical Use Cases

1. Inventory Management:

Scenario: A fleet of delivery drones swaps batteries 50 times a day.
Action: The GCS reads serial_number and cycle_count via SMART_BATTERY_INFO . It logs
this data to a database to track exactly how many cycles each specific battery pack has
undergone, scheduling retirement before performance degrades.

2. Chemistry Verification:

Scenario: A charger connects to the vehicle.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 305 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-interface/battery-status.html

Action: The charger reads the chemistry field (not shown above but implied by standard) to
automatically select the correct LiPo/Li-Ion/LiFePO4 charging profile, preventing fire hazards.

TUNNEL (ID 385) UNSUPPORTED

Summary

The TUNNEL message is designed to tunnel arbitrary data (payloads) between MAVLink components. It
allows for custom protocols or vendor-specific data to be transported transparently over the MAVLink
network.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot supports Serial Tunneling over the DroneCAN bus (using uavcan.tunnel.Targetted messages)
to transparently pass serial data (like GPS configuration or firmware updates) to CAN peripherals. However,
it does not currently support the MAVLink TUNNEL message for this purpose.

Intended Data Fields (Standard)

target_system / target_component : Targeted component.
payload_type : Type of payload (enum MAV_TUNNEL_PAYLOAD_TYPE).
payload_length : Length of data (up to 128 bytes).
payload : Raw data buffer.

Theoretical Use Cases

1. Proprietary Payload Control:

Scenario: A user has a custom sensor payload that speaks a proprietary binary protocol (not
MAVLink).
Action: Instead of writing a new MAVLink parser, the GCS encapsulates the binary blob in a
TUNNEL message. The payload on the drone (connected to the Mavlink stream) unwraps the
blob and consumes it directly.

2. Debug Shell:

Scenario: A developer wants to access a Linux shell on a Companion Computer via the
telemetry radio.
Action: SSH traffic is chunked and wrapped into TUNNEL messages, creating a virtual
terminal connection over the telemetry link.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 306 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/debug.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html

ADAP_TUNING (ID 11010) UNSUPPORTED

Summary

The ADAP_TUNING message is designed to report internal variables of an adaptive controller or auto-tuning
process.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

For tuning telemetry, ArduPilot typically uses:

PID_TUNING (194): Real-time PID data.
MAV_CMD_DO_AUTOTUNE_ENABLE : To start AutoTune.
STATUSTEXT : For AutoTune progress updates.

Intended Data Fields (Standard)

axis : Axis being tuned (Roll, Pitch, Yaw).
desired : Desired rate/angle.
achieved : Achieved rate/angle.
error : Error value.
theta : Adaptive gain.
omega : Adaptive frequency.
sigma : Adaptive sigma.
theta_dot : Derivative of gain.
omega_dot : Derivative of frequency.
sigma_dot : Derivative of sigma.
f : Feed-forward value.
f_dot : Derivative of feed-forward.
u : Output.

Theoretical Use Cases

1. Real-Time MRAC Debugging:

Scenario: A developer is testing a Model Reference Adaptive Controller (MRAC).
Action: The controller streams ADAP_TUNING to report how the adaptive gains (theta) are
evolving in real-time response to disturbances. The developer plots these gains to ensure
they are converging and not oscillating.

2. System Identification:

Scenario: Identifying the moment of inertia of a new airframe.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 307 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/mavlink-interface/pid-tuning.html
https://mavlinkhud.com/field-manual/advanced-tuning/autotune-logic.html
https://mavlinkhud.com/field-manual/mavlink-interface/statustext.html

Action: An adaptive estimator varies the control inputs and measures the response.
ADAP_TUNING reports the estimated physical parameters (omega , sigma) as they settle.

SENSORS

GPS_STATUS (ID 25) UNSUPPORTED

Summary

The GPS_STATUS message is defined in the MAVLink protocol to transmit detailed per-satellite information,
including the PRN (satellite ID), Signal-to-Noise Ratio (SNR), Elevation, and Azimuth for up to 20 satellites.
ArduPilot does not implement or transmit this message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

While many GPS modules (u-blox, MTK) provide the satellite constellation data required for this message,
ArduPilot does not currently aggregate or stream this data via MAVLink. Basic satellite count and fix quality
are instead provided by GPS_RAW_INT (24).

Absence: There is no send_gps_status function in the GCS libraries.
Alternative: Advanced users often rely on u-blox "pass-through" (Serial over MAVLink) or DataFlash
logs to view detailed satellite geometry during post-flight analysis.

Data Fields (Standard)

satellites_visible : Number of satellites visible.
satellite_prn : Global satellite ID.
satellite_used : 0: Satellite not used, 1: used for localization.
satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite.
satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg.
satellite_snr : Signal to noise ratio of satellite.

Key Codebase Locations

libraries/GCS_MAVLink/ap_message.h: Message ID 25 is missing from the supported message
enum.
libraries/GCS_MAVLink/GCS_Common.cpp: Lacks a handler for ID 25 in both TX and RX loops.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 308 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/gps-raw-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/ap_message.h
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp

RAW_PRESSURE (ID 28) UNSUPPORTED

Summary

The RAW_PRESSURE message is defined in the MAVLink protocol to transmit uncalibrated pressure readings.
ArduPilot does not implement or transmit this message. Instead, it uses SCALED_PRESSURE (29) to report
physics-ready absolute and differential pressure data.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

ArduPilot's philosophy is to perform sensor calibration and scaling onboard. Consequently, it bypasses
"Raw" messages (which often imply raw ADC counts or uncompensated values) for subsystems like
Barometers.

Replacement: Users should look for SCALED_PRESSURE (29) for the primary barometer.
Secondary Sensors: SCALED_PRESSURE2 (137) and SCALED_PRESSURE3 (143) are used for
redundant sensors.

Data Fields (Standard)

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
press_abs : Absolute pressure (raw).
press_diff1 : Differential pressure 1 (raw, 0 if nonexistant).
press_diff2 : Differential pressure 2 (raw, 0 if nonexistant).
temperature : Raw Temperature measurement (raw).

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:1030: Lacks a mapping for
MAVLINK_MSG_ID_RAW_PRESSURE (28), while mapping ID 29 to MSG_SCALED_PRESSURE .

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 309 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-pressure.html
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-pressure2.html
https://mavlinkhud.com/field-manual/mavlink-interface/scaled-pressure3.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L1030

OPTICAL_FLOW_RAD (ID 106) UNSUPPORTED

Summary

The OPTICAL_FLOW_RAD message is an advanced alternative to the standard OPTICAL_FLOW (100)
message. It transmits flow data as integrated angular speeds (radians) and includes integrated gyroscope
data for better rotation compensation. ArduPilot does not currently implement a handler or sender for

this message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

While many modern flow sensors (like the PX4Flow) output data in radians, ArduPilot's MAVLink backend
for optical flow (AP_OpticalFlow_MAV) is currently hardcoded to expect the pixel-based OPTICAL_FLOW

(100) message.

Absence: There is no mapping for MAVLINK_MSG_ID_OPTICAL_FLOW_RAD in GCS_Common.cpp or
AP_OpticalFlow .
Recommendation: Developers using external MAVLink flow sensors should ensure they are
configured to output the standard pixel-based OPTICAL_FLOW (100) packet.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
sensor_id : Sensor ID.
integration_time_us : Integration time.
integrated_x : Integrated optical flow around X-axis (rad).
integrated_y : Integrated optical flow around Y-axis (rad).
integrated_xgyro : Integrated gyro around X-axis (rad).
integrated_ygyro : Integrated gyro around Y-axis (rad).
integrated_zgyro : Integrated gyro around Z-axis (rad).
temperature : Temperature (centidegrees).
quality : Optical flow quality / confidence. 0: bad, 255: maximum quality.
time_delta_distance_us : Time since the distance was sampled.
distance : Distance to the center of the flow field. Positive value: distance known. Negative value:
Unknown distance.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:4047: Shows that only OPTICAL_FLOW (100) is
handled.
libraries/AP_OpticalFlow/AP_OpticalFlow_MAV.cpp:92: Decodes only the pixel-based message.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 310 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/optical-flow.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L4047
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_OpticalFlow/AP_OpticalFlow_MAV.cpp#L92

GPS2_STATUS (ID 125) UNSUPPORTED

Summary

The GPS2_STATUS message is defined in the MAVLink protocol to provide detailed satellite-level
information for a secondary GPS receiver, including PRN, SNR, Elevation, and Azimuth for each visible
satellite. ArduPilot does not implement or transmit this message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

Consistent with the lack of support for the primary GPS_STATUS (25) message, ArduPilot does not stream
satellite constellations for secondary receivers via MAVLink. General health, fix type, and satellite counts for
the second GPS are instead provided by GPS2_RAW (124).

Absence: There is no handler for MAVLINK_MSG_ID_GPS2_STATUS in the GCS_MAVLink libraries.
Alternative: Users needing detailed satellite info typically use "Pass-Through" logging or vendor-
specific tools.

Intended Data Fields (Standard)

satellites_visible : Number of satellites visible.
satellite_prn : Global satellite ID.
satellite_used : 0: Satellite not used, 1: used for localization.
satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite.
satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg.
satellite_snr : Signal to noise ratio of satellite.

Theoretical Use Cases

1. Deep Multipath Analysis:

Scenario: A rover operating in an urban canyon with two GPS receivers.
Action: By analyzing the SNR and Elevation of individual satellites from both receivers, a
researcher could determine which unit is seeing more obstructed sky and tune the blending
weights accordingly.

2. Constellation Verification:

Scenario: Verifying a "Dual Frequency" (L1/L5) receiver.
Action: Checking the PRN codes to confirm the secondary receiver is actually tracking the
specific satellites (e.g., Galileo E5a) claimed by the manufacturer.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Lacks a handler or sender for ID 125.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 311 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/gps-status.html
https://mavlinkhud.com/field-manual/mavlink-interface/gps2-raw.html
https://mavlinkhud.com/field-manual/ekf-failsafes/gps-glitch-protection.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp

SENSOR_OFFSETS (ID 150) UNSUPPORTED

Summary

The SENSOR_OFFSETS message was historically used to report raw calibration offsets for the IMU and
Magnetometer.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It is deprecated.

Calibration offsets are now handled via:

1. Parameters: INS_ACCOFFS_* , COMPASS_OFS_* .
2. MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS (242): For setting offsets (though this is also largely
superseded by onboard calibration routines).

Data Fields

mag_ofs_x : Magnetometer X offset.
mag_ofs_y : Magnetometer Y offset.
mag_ofs_z : Magnetometer Z offset.
mag_declination : Magnetic declination (radians).
raw_press : Raw pressure (Pa).
raw_temp : Raw temperature (degC).
gyro_cal_x : Gyro X calibration.
gyro_cal_y : Gyro Y calibration.
gyro_cal_z : Gyro Z calibration.
accel_cal_x : Accel X calibration.
accel_cal_y : Accel Y calibration.
accel_cal_z : Accel Z calibration.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 312 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/mavlink-interface/raw-pressure.html

WIND_COV (ID 231) UNSUPPORTED

Summary

Wind covariance report.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It uses WIND (168) for wind estimation.

Theoretical Use Cases

Wind estimation with uncertainty metrics.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 313 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html

RAW_RPM (ID 339) UNSUPPORTED

Summary

The RAW_RPM message is designed to report the unscaled frequency/RPM from a sensor, often before
applying scaling factors like pole count or gear ratio.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot supports RPM reporting via:

1. RPM (226): For dedicated RPM sensors (Hall effect, Optical).
2. ESC_TELEMETRY_1_TO_4 (11030+): For RPM data coming directly from ESCs (BLHeli, DroneCAN).

The RAW_RPM message is not currently used in the ArduPilot MAVLink stream.

Intended Data Fields (Standard)

index : RPM Sensor index.
frequency : Frequency in Hz.

Theoretical Use Cases

1. Sensor Debugging:

Scenario: A user is setting up a new RPM sensor but doesn't know the magnet layout on the
flywheel.
Action: The sensor reports RAW_RPM (raw interrupts per second). The user revs the engine to
a known speed (audible check) and compares it to the raw frequency to derive the correct
scaling factor (Poles).

2. Vibration Analysis:

Scenario: Detecting prop imbalance.
Action: High-frequency raw data might reveal micro-fluctuations in rotation speed within a
single rotation (if sampled fast enough), indicating a damaged blade.

CONTROL

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 314 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/esc-telemetry-1-to-4.html
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html

MANUAL_SETPOINT (ID 81) UNSUPPORTED

Summary

Manual setpoint message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Manual control setpoints.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 315 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/manual-control.html

SET_ACTUATOR_CONTROL_TARGET (ID 139) UNSUPPORTED

Summary

The SET_ACTUATOR_CONTROL_TARGET message is designed to set the "Actuator Control Target," which
allows for direct control of the vehicle's actuators (motors and servos) normalized from -1.0 to 1.0. This
bypasses the higher-level flight modes and rate controllers.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

For direct actuator control, ArduPilot typically uses:

1. RC_CHANNELS_OVERRIDE (70): To override radio inputs.
2. MAV_CMD_DO_SET_SERVO : To set a specific servo to a PWM value.
3. MAV_CMD_DO_SET_ACTUATOR : A newer command to control actuators.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
group_mlx : Actuator group. The "_mlx" indicates this is a multi-instance message and a MAVLink
parser should use this field to difference between instances.
target_system : System ID.
target_component : Component ID.
controls : Actuator controls. Normed -1..+1 where 0 is neutral or de-throttled. Each action system
number 0 is also a special value and means no action. The mapping of controls to actuators is
vehicle specific.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 316 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/actuator-control-target.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels-override.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

ACTUATOR_CONTROL_TARGET (ID 140) UNSUPPORTED

Summary

The ACTUATOR_CONTROL_TARGET message reports the current "Target" state of the actuators (motors and
servos), normalized from -1.0 to 1.0. This allows a Ground Control Station (GCS) to monitor what the mixer is
trying to achieve.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Instead, ArduPilot uses:

1. SERVO_OUTPUT_RAW (36): To report the actual PWM output sent to the motors.
2. NAV_CONTROLLER_OUTPUT (62): To report high-level navigation targets (Roll, Pitch, Bearing).

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
group_mlx : Actuator group. The "_mlx" indicates this is a multi-instance message and a MAVLink
parser should use this field to difference between instances.
controls : Actuator controls. Normed -1..+1 where 0 is neutral or de-throttled. Each action system
number 0 is also a special value and means no action. The mapping of controls to actuators is
vehicle specific.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 317 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/servo-output-raw.html
https://mavlinkhud.com/field-manual/mavlink-interface/nav-controller-output.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

SET_MAG_OFFSETS (ID 151) UNSUPPORTED

Summary

The SET_MAG_OFFSETS message was historically used to set the magnetometer calibration offsets.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It is deprecated.

Modern systems use:

1. Onboard Compass Calibration: Invoked via MAV_CMD_DO_START_MAG_CAL (42424) or
MAG_CAL_REPORT messages.

2. Parameters: Setting COMPASS_OFS_X/Y/Z directly.

Data Fields

target_system : System ID.
target_component : Component ID.
mag_ofs_x : Magnetometer X offset.
mag_ofs_y : Magnetometer Y offset.
mag_ofs_z : Magnetometer Z offset.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 318 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/mavlink-interface/mag-cal-report.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

SET_HOME_POSITION (ID 243) UNSUPPORTED

Summary

The SET_HOME_POSITION message is defined in the MAVLink standard to allow Ground Control Stations to
update the vehicle's home location. However, ArduPilot does not implement a handler for this specific

message ID. Instead, ArduPilot uses the command-based MAV_CMD_DO_SET_HOME (via COMMAND_LONG or
COMMAND_INT) to manage home position updates.

Status

Unsupported (Use MAV_CMD_DO_SET_HOME instead)

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

ArduPilot prefers the command protocol (MAV_CMD) for state changes because it provides a standardized
acknowledgement mechanism (COMMAND_ACK). Standalone messages like SET_HOME_POSITION often lack
built-in ACKs, making them less reliable for critical safety operations.

Alternative: Ground Control Stations should send a COMMAND_LONG with command = 179
(MAV_CMD_DO_SET_HOME) .
Behavior: When received via the command protocol, ArduPilot verifies that the vehicle is disarmed
(in most configurations) before committing the new home coordinates to the AHRS and storage.

Data Fields (Standard)

target_system : System ID.
latitude : Latitude (WGS84), in degrees * 1E7.
longitude : Longitude (WGS84, in degrees * 1E7.
altitude : Altitude (MSL), in meters * 1000 (positive for up).
x : Local X position of this position in the local coordinate frame.
y : Local Y position of this position in the local coordinate frame.
z : Local Z position of this position in the local coordinate frame.
q : World to surface normal and heading transformation of the takeoff position. Used to indicate the
heading and slope of the ground.
approach_x : Local X position of the end of the approach vector. Multicopters should set this
position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff,
assuming the takeoff happened from the threshold / touchdown zone.
approach_y : Local Y position of the end of the approach vector. Multicopters should set this
position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff,
assuming the takeoff happened from the threshold / touchdown zone.
approach_z : Local Z position of the end of the approach vector. Multicopters should set this
position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff,
assuming the takeoff happened from the threshold / touchdown zone.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 319 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/command-long.html
https://mavlinkhud.com/field-manual/mavlink-interface/command-int.html
https://mavlinkhud.com/field-manual/mavlink-interface/home-position.html
https://mavlinkhud.com/field-manual/mavlink-interface/command-ack.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5529: Handling of the MAV_CMD_DO_SET_HOME
equivalent.

ACTUATOR_OUTPUT_STATUS (ID 375) UNSUPPORTED

Summary

The ACTUATOR_OUTPUT_STATUS message is designed to report the status of actuators (servos, motors) in a
more flexible array format (up to 32 actuators) compared to the older SERVO_OUTPUT_RAW (limited to 16).

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot relies on SERVO_OUTPUT_RAW (36) to report the PWM output values of its servo channels (1-16).
For higher channel counts or specific actuator feedback, other mechanisms or multiple messages would be
required, but ACTUATOR_OUTPUT_STATUS is not currently used.

Intended Data Fields (Standard)

time_usec : Timestamp (us since UNIX epoch).
active : Number of active actuators.
actuator : Array of 32 float values (output).

Theoretical Use Cases

1. Complex Robotics:

Scenario: A hexapod robot with 18 servos (3 per leg).
Action: SERVO_OUTPUT_RAW can only report the first 16. ACTUATOR_OUTPUT_STATUS allows
reporting all 18 joint angles in a single atomic message frame, simplifying the log analysis for
walking gaits.

2. Normalized Feedback:
Scenario: Analyzing mixer performance.
Action: The message reports values as normalized floats (0.0 to 1.0 or -1.0 to 1.0) rather than
raw PWM microseconds. This makes it easier to debug the mixer logic independent of the
specific servo calibration endpoints.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 320 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5529
https://mavlinkhud.com/field-manual/mavlink-interface/servo-output-raw.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-interface/debug.html

MISSION

MISSION_REQUEST_PARTIAL_LIST (ID 37) UNSUPPORTED

Summary

Request a partial list of mission items from the system.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It relies on the standard MISSION_REQUEST_LIST and individual
MISSION_REQUEST messages to download missions.

Theoretical Use Cases

Efficiently downloading a small range of waypoints from a large mission.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 321 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request-list.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-request.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html

SAFETY_SET_ALLOWED_AREA (ID 54) UNSUPPORTED

Summary

Set a safety zone (volume) for the vehicle.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It uses the AC_Fence library and the Fence Protocol (items
with MAV_CMD_NAV_FENCE_...) for geofencing.

Theoretical Use Cases

Defining a safety box.

SAFETY_ALLOWED_AREA (ID 55) UNSUPPORTED

Summary

Read out the safety zone the MAV currently assumes.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Reading geofence boundaries.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 322 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

TRAJECTORY_REPRESENTATION_WAYPOINTS (ID 332) UNSUPPORTED

Summary

The TRAJECTORY_REPRESENTATION_WAYPOINTS message is used to describe a trajectory as a series of
waypoints. It allows for more complex path planning descriptions than standard mission items, often used in
offboard control scenarios.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot typically handles trajectories via:

1. Mission Protocol: Uploading a list of MISSION_ITEM_INT waypoints.
2. Guided Mode: Sending individual SET_POSITION_TARGET_LOCAL_NED or

SET_POSITION_TARGET_GLOBAL_INT commands.

Intended Data Fields (Standard)

time_usec : Timestamp.
valid_points : Number of valid points (up to 5).
pos_x / pos_y / pos_z : Arrays of X, Y, Z positions.
vel_x / vel_y / vel_z : Arrays of X, Y, Z velocities.
acc_x / acc_y / acc_z : Arrays of X, Y, Z accelerations.
pos_yaw : Array of yaw angles.
vel_yaw : Array of yaw rates.
command : Array of MAV_CMD commands associated with waypoints.

Theoretical Use Cases

1. Lookahead Planning:

Scenario: A companion computer is planning a path through a dynamic environment.
Action: It sends a packet of 5 waypoints representing the immediate future trajectory (0s, 1s,
2s, 3s, 4s) to the flight controller. This provides the controller with "intent" data, allowing for
smoother feed-forward control than sending a single setpoint at 50Hz.

2. Swarm Choreography:

Scenario: Drones flying in formation.
Action: The central computer broadcasts the next 5 seconds of the "dance" to all drones. If
the radio link drops for a second, the drones continue on the pre-buffered path without
jittering.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 323 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item-int.html
https://mavlinkhud.com/field-manual/mavlink-interface/set-position-target-local-ned.html
https://mavlinkhud.com/field-manual/mavlink-interface/set-position-target-global-int.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html

TRAJECTORY_REPRESENTATION_BEZIER (ID 333) UNSUPPORTED

Summary

The TRAJECTORY_REPRESENTATION_BEZIER message describes a trajectory using Bezier curves. This allows
for extremely smooth path definitions with continuous velocity and acceleration profiles, often used in
advanced motion planning.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Internally, ArduPilot uses S-Curve navigation (SCurve) for smooth path generation between waypoints, but
it does not currently accept external Bezier curve definitions via MAVLink.

Intended Data Fields (Standard)

time_usec : Timestamp.
valid_points : Number of valid points.
pos_x / pos_y / pos_z : Arrays of control points.
delta : Array of time deltas for each segment.
pos_yaw : Array of yaw angles.

Theoretical Use Cases

1. Cinematic Videography:

Scenario: Filming a car chase.
Action: A director designs a complex, sweeping camera move in 3D software. The software
exports the path as a series of Bezier curves, which are uploaded to the drone. The drone
executes the curve perfectly, ensuring smooth acceleration that doesn't jerk the gimbal.

2. Obstacle Avoidance:

Scenario: High-speed flight through a forest.
Action: A path planner generates a curved tube that avoids trees. Sending Bezier control
points allows the drone to follow this curved tube much more accurately than connecting
straight line waypoints.

PAYLOAD

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 324 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/advanced-tuning/input-shaping.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

CAMERA_TRIGGER (ID 112) UNSUPPORTED

Summary

The CAMERA_TRIGGER message is defined in MAVLink to notify external systems that a camera shutter has
been activated. ArduPilot does not implement this message. Instead, it uses the more modern and
detailed CAMERA_FEEDBACK (180) and CAMERA_IMAGE_CAPTURED (263) messages to report camera events.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

ArduPilot's camera subsystem (AP_Camera) focuses on providing rich feedback about the exact moment
and location of a photo capture, which is essential for photogrammetry. The simple CAMERA_TRIGGER

message lacks the precision and metadata (like roll/pitch/yaw and GPS coordinates) required for
professional mapping, so it is bypassed in favor of other messages.

Replacement: Users and GCS developers should listen for CAMERA_FEEDBACK (180) to receive the
exact position and attitude data associated with a shutter event.

Data Fields

time_usec : Timestamp for the image frame in microseconds.
seq : Image sequence number.

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Lacks a handler or sender for ID 112.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 325 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-feedback.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-image-captured.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp

DATA_TRANSMISSION_HANDSHAKE (ID 130) UNSUPPORTED

Summary

The DATA_TRANSMISSION_HANDSHAKE message is part of the legacy MAVLink Image Transmission Protocol.
It is used to initiate a data transfer session (typically for images or other large binary blobs) between a
component and a Ground Control Station.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

This protocol has largely been superseded by:

1. MAVLink FTP (FILE_TRANSFER_PROTOCOL): For transferring logs, parameters, and mission files.
2. RTSP/UDP Streaming: For live video (see VIDEO_STREAM_INFORMATION).
3. CAMERA_IMAGE_CAPTURED : For notifying GCS of new photos, often with HTTP download links.

Data Fields

type : Type of requested/acknowledged data.
size : Total data size in bytes.
width : Width of a matrix or image.
height : Height of a matrix or image.
packets : Number of packets being sent.
payload : Payload size per packet.
jpg_quality : JPEG quality.

Theoretical Use Cases

1. Low-Bandwidth Image Transfer:

Scenario: A satellite-connected drone takes a surveillance photo.
Action: Since the link is too slow for RTSP, the drone initiates a handshake to send the image
as a series of small, acknowledged MAVLink packets (ENCAPSULATED_DATA), allowing the
GCS to reconstruct the image over several minutes.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 326 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-ftp.html
https://mavlinkhud.com/field-manual/mavlink-interface/file-transfer-protocol.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/video-stream-information.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-image-captured.html
https://mavlinkhud.com/field-manual/mavlink-interface/encapsulated-data.html

ENCAPSULATED_DATA (ID 131) UNSUPPORTED

Summary

The ENCAPSULATED_DATA message carries the actual binary payload (chunks of an image or file) during a
transfer initiated by DATA_TRANSMISSION_HANDSHAKE .

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It is part of the legacy Image Transmission Protocol.

Data Fields

seqnr : Sequence number (starting at 0).
data : Raw data (up to 253 bytes).

Theoretical Use Cases

1. Chunked File Transfer:

Scenario: Transmitting a 10KB thumbnail image.
Action: The image is split into 40 packets. Each packet is sent as an ENCAPSULATED_DATA
message. The receiver uses the seqnr to reassemble the binary blob in the correct order.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 327 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/data-transmission-handshake.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-ftp.html

DIGICAM_CONFIGURE (ID 154) LEGACY / UNSUPPORTED

Summary

The DIGICAM_CONFIGURE message was historically used to configure onboard camera settings like
aperture, shutter speed, and ISO.

Status

Legacy / Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message directly.

Instead, camera configuration is handled via the Mission Command protocol using

MAV_CMD_DO_DIGICAM_CONFIGURE (202).

Mission Items: Users add DO_DIGICAM_CONFIGURE commands to missions.
Command Handling: AP_Camera processes these commands to adjust settings on supported
camera backends (e.g., MAVLink cameras, Relay triggers).

Data Fields

target_system : System ID.
target_component : Component ID.
mode : Shooting mode (A, S, M, Auto, etc.).
shutter_speed : Shutter speed (1/value).
aperture : Aperture (F-stop * 10).
iso : ISO sensitivity.
exposure_type : Exposure type.
command_id : Command Identity.
engine_cut_off : Main engine cut-off time (seconds/10).
extra_param : Extra parameter.
extra_value : Extra value.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 328 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-settings.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html

MOUNT_CONFIGURE (ID 156) LEGACY / UNSUPPORTED

Summary

The MOUNT_CONFIGURE message was historically used to configure the operation mode (retract, neutral,
mavlink targeting, rc targeting, gps point) of a gimbal/mount.

Status

Legacy / Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (ArduPilot explicitly warns of deprecation if received)

Description

ArduPilot deprecated this message in version 4.5. Receiving it may trigger a
send_received_message_deprecation_warning .

Users should instead use the Mission Command:

MAV_CMD_DO_MOUNT_CONFIGURE (204)

Data Fields

target_system : System ID.
target_component : Component ID.
mount_mode : Mount operation mode (MAV_MOUNT_MODE enum).
stab_roll : (1 = yes, 0 = no).
stab_pitch : (1 = yes, 0 = no).
stab_yaw : (1 = yes, 0 = no).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 329 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

MOUNT_CONTROL (ID 157) LEGACY / UNSUPPORTED

Summary

The MOUNT_CONTROL message was historically used to control the pitch, roll, and yaw angles of a
gimbal/mount.

Status

Legacy / Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (ArduPilot explicitly warns of deprecation if received)

Description

ArduPilot deprecated this message in version 4.5. Receiving it may trigger a
send_received_message_deprecation_warning .

Users should instead use the Mission Command:

MAV_CMD_DO_MOUNT_CONTROL (205)

Data Fields

target_system : System ID.
target_component : Component ID.
input_a : Pitch (centi-degrees) or Lat (deg * 1E7) depending on mode.
input_b : Roll (centi-degrees) or Lon (deg * 1E7) depending on mode.
input_c : Yaw (centi-degrees) or Alt (cm) depending on mode.
save_position : Save current position (1 = yes).

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 330 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

CAMERA_STATUS (ID 179) UNSUPPORTED

Summary

Legacy camera status message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

This message is not supported by ArduPilot. Use CAMERA_FEEDBACK (180) or CAMERA_IMAGE_CAPTURED

(263) instead.

Theoretical Use Cases

Legacy camera reporting.

GIMBAL_TORQUE_CMD_REPORT (ID 214) UNSUPPORTED

Summary

Report torque commands for gimbal.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Debugging gimbal motor torques.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 331 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-feedback.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-image-captured.html

GOPRO_GET_REQUEST (ID 216) UNSUPPORTED

Summary

Request a setting from a GoPro.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not process this message. It is likely routed directly between the GCS and the
Gimbal/Camera if used.

Theoretical Use Cases

Retrieving camera settings.

GOPRO_GET_RESPONSE (ID 217) UNSUPPORTED

Summary

Response to a GoPro setting request.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not process this message.

Theoretical Use Cases

Returning camera settings.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 332 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-settings.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-settings.html

GOPRO_SET_REQUEST (ID 218) UNSUPPORTED

Summary

Request to set a GoPro setting.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not process this message.

Theoretical Use Cases

Changing camera settings.

GOPRO_SET_RESPONSE (ID 219) UNSUPPORTED

Summary

Response to a GoPro set request.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not process this message.

Theoretical Use Cases

Confirming camera setting changes.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 333 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-settings.html
https://mavlinkhud.com/field-manual/mavlink-interface/gopro-set-request.html

STORAGE_INFORMATION (ID 261) UNSUPPORTED

Summary

The STORAGE_INFORMATION message is designed to report the status, capacity, and usage of onboard
storage media (e.g., SD cards, internal flash, SSDs). It supports reporting for multiple storage devices via a
storage_id index. This message allows a Ground Control Station to warn the pilot if storage is low or if a
drive is failing before starting a mission or recording session.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot currently does not implement this message. While ArduPilot supports MEMINFO for RAM usage
and SYS_STATUS for general system health, it does not have a standardized mechanism for reporting
detailed file system statistics via this specific MAVLink message.

If implemented in the future, it would likely be used by the AP_Logger or AP_Filesystem libraries to
report the status of the microSD card.

Intended Data Fields (Standard)

time_boot_ms : Timestamp (ms since boot).
storage_id : ID of the storage device (1-based index).
storage_count : Total number of storage devices.
status : Status flags (STORAGE_STATUS enum) indicating if the device is ready, unformatted, or has
errors.
total_capacity : Total size in MiB.
used_capacity : Used space in MiB.
available_capacity : Free space in MiB.
read_speed : Read throughput in MiB/s.
write_speed : Write throughput in MiB/s.

Theoretical Use Cases

1. Pre-Flight Check:

Scenario: A photographer is about to launch a mission.
Action: The GCS checks available_capacity . If it's less than 1GB (insufficient for the
planned 4K video recording), it prevents arming and prompts the user to format the card.

2. Health Monitoring:

Scenario: A microSD card is degrading.
Action: The autopilot detects slow write speeds and reports a low write_speed . The GCS
warns the user that high-rate logging might be compromised.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 334 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/meminfo.html
https://mavlinkhud.com/field-manual/mavlink-interface/sys-status.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

CAMERA_IMAGE_CAPTURED (ID 263) UNSUPPORTED

Summary

The CAMERA_IMAGE_CAPTURED message is intended to be emitted every time a camera captures an image. It
includes detailed metadata such as the precise UTC timestamp, geolocation (lat/lon/alt), orientation
(quaternion), and the file URL. It is effectively a richer, modern replacement for the older CAMERA_FEEDBACK
message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Instead, ArduPilot uses the legacy CAMERA_FEEDBACK (180) message to report successful image captures.
This usually occurs when the camera's hot-shoe signal triggers the flight controller's feedback pin.

Intended Data Fields (Standard)

time_boot_ms : Timestamp (ms since boot).
time_utc : Capture time (us since UNIX epoch).
camera_id : Deprecated/unused.
lat , lon , alt : Location where image was taken.
relative_alt : Altitude above ground.
q : Quaternion of camera orientation.
image_index : Zero-based index of this image.
capture_result : Success (1) or Failure (0).
file_url : URL of the image (local path or HTTP).

Alternative

For image capture feedback in ArduPilot, refer to CAMERA_FEEDBACK (180).

Theoretical Use Cases

1. Instant Geotagging:

Scenario: A companion computer is building a map in real-time.
Action: It receives CAMERA_IMAGE_CAPTURED containing the exact pose (q) and location
(lat/lon) of the image just taken, allowing it to project the image onto the map without
needing to interpolate log data later.

2. File Management:

Scenario: A WiFi-connected camera.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 335 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-feedback.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html

Action: The message includes file_url , allowing the GCS to immediately download a
thumbnail of the image via HTTP.

MOUNT_ORIENTATION (ID 265) UNSUPPORTED

Summary

The MOUNT_ORIENTATION message is a modern replacement for the older MOUNT_STATUS message. It is
designed to report the precise orientation of a gimbal or camera mount in the global frame (Roll/Pitch/Yaw
relative to Earth) and the body frame (Yaw relative to vehicle).

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot currently does not implement this message.

Instead, ArduPilot uses the legacy MOUNT_STATUS (158) message to report gimbal angles. MOUNT_STATUS

provides the pitch, roll, and yaw angles in centi-degrees, typically relative to the body frame (depending on
the mode).

Intended Data Fields (Standard)

time_boot_ms : Timestamp (ms since boot).
roll : Roll in global frame (deg).
pitch : Pitch in global frame (deg).
yaw : Yaw relative to the vehicle (deg).
yaw_absolute : Yaw in global frame (relative to North) (deg).

Alternative

For gimbal feedback in ArduPilot, refer to MOUNT_STATUS (158).

Theoretical Use Cases

1. Augmented Reality (AR):

Scenario: A GCS overlays street names on the live video feed.
Action: The GCS uses yaw_absolute and pitch from MOUNT_ORIENTATION to accurately
project the 3D map data onto the 2D video plane, independent of the drone's own heading.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 336 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/mount-status.html

VIDEO_STREAM_STATUS (ID 270) UNSUPPORTED

Summary

The VIDEO_STREAM_STATUS message is designed to report the real-time health and telemetry of a video
stream, such as current bitrate, framerate, and resolution. This differs from VIDEO_STREAM_INFORMATION ,
which provides static configuration data (like the URI).

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

While ArduPilot supports sending static stream configuration via VIDEO_STREAM_INFORMATION (269), it does
not currently monitor or report the real-time performance statistics (bandwidth usage, dropped frames) of
the video link.

Intended Data Fields (Standard)

stream_id : Video Stream ID (1-based).
flags : Status flags (VIDEO_STREAM_STATUS_FLAGS) indicating if the stream is running, thermal, etc.
framerate : Frame rate (Hz).
resolution_h : Horizontal resolution (pix).
resolution_v : Vertical resolution (pix).
bitrate : Bit rate (bits/s).
rotation : Video image rotation (deg).
hfov : Horizontal Field of View (deg).

Theoretical Use Cases

1. Adaptive Streaming:

Scenario: The radio link quality drops.
Action: The camera reports a reduced bitrate via VIDEO_STREAM_STATUS . The GCS sees
this and automatically downgrades the video player quality to match, preventing buffering or
lag.

2. Diagnostics:

Scenario: The video feed is black.
Action: The GCS checks VIDEO_STREAM_STATUS . If framerate is 0, it knows the camera
sensor has failed. If framerate is 30 but the image is black, it might be a lens cap or
exposure issue.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 337 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/video-stream-information.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html

CAMERA_TRACKING_IMAGE_STATUS (ID 275) UNSUPPORTED

Summary

The CAMERA_TRACKING_IMAGE_STATUS message is designed to report the status of an on-camera object
tracking system, specifically using image coordinates (pixel space). It reports the location of the tracked
point or rectangle within the video frame.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

While ArduPilot supports sending tracking commands to a camera (e.g., MAV_CMD_CAMERA_TRACK_POINT), it
does not currently have a mechanism to relay the high-frequency status of that tracking (the bounding box
location) back to the GCS via this MAVLink message.

Intended Data Fields (Standard)

tracking_status : Current status (CAMERA_TRACKING_STATUS_FLAGS).
tracking_mode : Current mode (CAMERA_TRACKING_MODE).
target_data : Generic data.
point_x , point_y : Point location in image (0..1).
radius : Radius of tracked object.
rec_top_x , rec_top_y : Bounding box top-left.
rec_bottom_x , rec_bottom_y : Bounding box bottom-right.

Theoretical Use Cases

1. Visual Confirmation:

Scenario: A user taps a car on the screen to track it.
Action: The camera reports the rec_top_x / rec_bottom_y of the object it has locked onto.
The GCS draws a green rectangle around the car, confirming to the user that the "lock"
command was successful and the camera is tracking the correct object.

2. Target Loss Warning:

Scenario: The tracked object moves behind a tree.
Action: The message stops arriving or reports a "Lost" status. The GCS alerts the pilot to
manually intervene.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 338 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

CAMERA_TRACKING_GEO_STATUS (ID 276) UNSUPPORTED

Summary

The CAMERA_TRACKING_GEO_STATUS message is designed to report the status of an on-camera object
tracking system, specifically using geospatial coordinates (Latitude/Longitude). Unlike

CAMERA_FOV_STATUS , which reports where the center of the image is looking, this message reports the
location of the specific object being tracked (e.g., a car or person).

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

While ArduPilot can calculate the camera's center-of-view intersection with the ground

(CAMERA_FOV_STATUS), it does not currently support relaying specific object-tracking telemetry from smart
cameras back to the GCS via this MAVLink message.

Intended Data Fields (Standard)

tracking_status : Current status (CAMERA_TRACKING_STATUS_FLAGS).
tracking_mode : Current mode (CAMERA_TRACKING_MODE).
lat , lon , alt : Location of the tracked object.
h_acc , v_acc : Accuracy/Uncertainty of the location.
vel_n , vel_e , vel_d : Velocity of the tracked object.
vel_acc : Velocity accuracy.
dist : Distance to the tracked object.
hdg : Heading of the tracked object.

Theoretical Use Cases

1. Target Speed Estimation:

Scenario: Following a suspect vehicle.
Action: The camera uses optical flow and rangefinding to calculate the vehicle's speed
(vel_n , vel_e). The GCS displays this speed to the operator.

2. Coordinate Handover:

Scenario: A surveillance drone spots a target.
Action: It broadcasts CAMERA_TRACKING_GEO_STATUS with the target's lat/lon . A second
"interceptor" drone receives this location and automatically navigates to intercept the target.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 339 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-fov-status.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html

GIMBAL_MANAGER_SET_MANUAL_CONTROL (ID 288) UNSUPPORTED

Summary

The GIMBAL_MANAGER_SET_MANUAL_CONTROL message provides a mechanism for direct "stick input" control
of a gimbal. It accepts normalized values (-1.0 to 1.0) for pitch, yaw, and zoom, mimicking the raw inputs
from an RC controller or joystick.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

For manual gimbal control via MAVLink, ArduPilot typically uses:

1. GIMBAL_MANAGER_SET_PITCHYAW (287): sending angular rates (rad/s) which can be mapped from
joystick axes.

2. RC_CHANNELS_OVERRIDE (70): overriding the specific RC channels mapped to the gimbal functions.

Intended Data Fields (Standard)

target_system / target_component : Targeted component.
flags : Bitmap (GIMBAL_MANAGER_FLAGS).
gimbal_device_id : Component ID of the gimbal.
pitch : Normalized pitch input (-1..1).
yaw : Normalized yaw input (-1..1).
pitch_rate : Normalized pitch rate input (-1..1).
yaw_rate : Normalized yaw rate input (-1..1).
zoom : Normalized zoom input (-1..1).

Theoretical Use Cases

1. Standardized Joystick Mapping:

Scenario: A GCS wants to support a generic USB gamepad for gimbal control.
Action: Instead of needing to know specific RC channel mappings (e.g., "Channel 6 is tilt"),
the GCS simply sends GIMBAL_MANAGER_SET_MANUAL_CONTROL with pitch = joystick.y .
This abstracts the radio configuration from the user interface.

2. Smooth Zooming:

Scenario: A variable-speed zoom rocker on a smart controller.
Action: The controller sends zoom = 0.5 (half speed in) or zoom = -1.0 (full speed out),
allowing precise lens control without needing complex rate calculations.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 340 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/gimbal-control.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/gimbal-manager-set-pitchyaw.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels-override.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html

CAN-BUS

UAVCAN_NODE_STATUS (ID 310) UNSUPPORTED

Summary

The UAVCAN_NODE_STATUS message is designed to bridge the status of devices on the UAVCAN (now
DroneCAN) bus onto the MAVLink network. It reports the health, uptime, and mode of individual CAN
nodes.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

While ArduPilot has robust support for DroneCAN (the protocol formerly known as UAVCAN v0) and
manages many peripherals (ESCs, GPS, Compass) via CAN, it does not act as a transparent bridge
reflecting the raw status of every CAN node onto MAVLink using this specific message.

Instead, ArduPilot abstracts the peripherals. For example, a CAN GPS is reported via GPS_RAW_INT and
GPS_STATUS , and a CAN ESC is reported via ESC_TELEMETRY , rather than as a generic "UAVCAN Node."

Intended Data Fields (Standard)

time_boot_ms : Timestamp (ms since boot).
time_usec_1 : Timestamp (us since UNIX epoch).
uptime_sec : Time since the node started.
health : Node health (OK, Warning, Error, Critical).
mode : Node mode (Operational, Initialization, Maintenance, etc.).
sub_mode : Sub-mode.
vendor_specific_status_code : Vendor specific status.

Theoretical Use Cases

1. Unified Health Monitor:
Scenario: A vehicle has 20 CAN peripherals (lights, servos, sensors).
Action: The GCS displays a "CAN Bus Health" table listing every node ID, its uptime, and its
health status. This allows a technician to instantly spot a device that is rebooting frequently or
in an error state, even if it doesn't have a dedicated MAVLink message.

2. Network Topology Mapping:

Scenario: Diagnosing a bus wiring fault.
Action: By monitoring which nodes fall offline (stop sending UAVCAN_NODE_STATUS) when a
specific cable is wiggled, ground crew can isolate physical connection issues.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 341 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/mavlink-interface/gps-raw-int.html
https://mavlinkhud.com/field-manual/mavlink-interface/gps-status.html

UAVCAN_NODE_INFO (ID 311) UNSUPPORTED

Summary

The UAVCAN_NODE_INFO message provides detailed static information about a UAVCAN (DroneCAN) node,
such as its hardware version, software version, and unique ID.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Similar to UAVCAN_NODE_STATUS (310), ArduPilot does not transparently bridge raw DroneCAN node
information onto the MAVLink network using this message.

Intended Data Fields (Standard)

time_boot_ms : Timestamp (ms since boot).
uptime_sec : Time since the node started.
name : Node name string.
hw_version_major / minor : Hardware version.
sw_version_major / minor : Software version.
sw_vcs_commit : Version Control System commit ID.

Theoretical Use Cases

1. Firmware Auditing:

Scenario: A fleet manager needs to ensure all ESCs are running the latest safety-critical
firmware.
Action: The GCS queries UAVCAN_NODE_INFO for all nodes. It compares the sw_version
against a manifest and flags any ESCs running outdated code.

2. Asset Tracking:

Scenario: Tracking individual components for warranty purposes.
Action: The message contains the Unique ID (UUID) of the node. The GCS logs this UUID,
allowing the operator to track the flight hours of a specific servo or GPS unit across multiple
airframes.

LOGGING

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 342 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/uavcan-node-status.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html

LOGGING_DATA (ID 266) UNSUPPORTED

Summary

The LOGGING_DATA message is part of a protocol for streaming log data from the vehicle to a Ground
Control Station (GCS) in real-time or as a robust download mechanism. It works in conjunction with
LOGGING_DATA_ACKED (267) to ensure data integrity.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

For downloading DataFlash logs (.BIN files), ArduPilot uses the standard MAVLink log download protocol
involving:

LOG_REQUEST_LIST (117)

LOG_ENTRY (118)
LOG_REQUEST_DATA (119)

LOG_DATA (120)

The LOGGING_DATA (266) message appears to be an alternative or streaming-focused mechanism that is
not currently part of the ArduPilot codebase.

Intended Data Fields (Standard)

target_system : System ID of the target.
target_component : Component ID of the target.
sequence : Sequence number (can wrap).
length : Data length (bytes).
first_message_offset : Offset into data where the first message starts.
data : Logged data (buffer).

Alternative

For log downloads in ArduPilot, refer to LOG_DATA (120).

Theoretical Use Cases

1. Black Box Streaming:

Scenario: A high-value experimental aircraft.
Action: The vehicle streams critical log data in real-time via LOGGING_DATA . If the vehicle is
lost or destroyed, the last seconds of telemetry are preserved on the GCS.

2. Reliable Download:
Scenario: Downloading logs over a lossy telemetry link.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 343 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html
https://mavlinkhud.com/field-manual/mavlink-interface/logging-data-acked.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-request-list.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-entry.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-request-data.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html

Action: The protocol uses the sequence numbers and ACKs to re-transmit only the lost
packets, ensuring a bit-perfect copy of the log file eventually arrives.

LOGGING_DATA_ACKED (ID 267) UNSUPPORTED

Summary

The LOGGING_DATA_ACKED message is the acknowledged variant of the LOGGING_DATA (266) streaming
protocol. It sends log data that requires an explicit LOGGING_ACK (268) from the receiver, ensuring critical
data is not lost during transmission.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

It is part of the same unsupported log streaming protocol as LOGGING_DATA (266). ArduPilot relies on the
standard LOG_DATA (120) message for log downloads.

Intended Data Fields (Standard)

target_system : System ID of the target.
target_component : Component ID of the target.
sequence : Sequence number.
length : Data length.
first_message_offset : Offset to start of first message.
data : Logged data.

Alternative

For log downloads in ArduPilot, refer to LOG_DATA (120).

Theoretical Use Cases

1. Guaranteed Delivery:

Scenario: Sending a critical "Crash Report" packet.
Action: The vehicle sends the crash dump via LOGGING_DATA_ACKED and re-transmits it until
the GCS confirms receipt with LOGGING_ACK , ensuring the data is not lost in radio noise.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 344 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/logging-data.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html
https://mavlinkhud.com/field-manual/mavlink-interface/logging-ack.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html

LOGGING_ACK (ID 268) UNSUPPORTED

Summary

The LOGGING_ACK message is used to acknowledge the receipt of a LOGGING_DATA_ACKED (267) packet.
This closes the loop for the reliable log streaming protocol.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

It is part of the same unsupported log streaming protocol as LOGGING_DATA (266) and

LOGGING_DATA_ACKED (267).

Intended Data Fields (Standard)

target_system : System ID of the target.
target_component : Component ID of the target.
sequence : Sequence number (must match the one in LOGGING_DATA_ACKED).

Theoretical Use Cases

1. Flow Control:
Scenario: The GCS is overwhelmed by incoming log data.
Action: The GCS delays sending LOGGING_ACK , implicitly telling the vehicle to pause
transmission until the buffer clears.

PARAMETERS

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 345 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/logging-data-acked.html
https://mavlinkhud.com/field-manual/mavlink-interface/logging-data.html
https://mavlinkhud.com/field-manual/advanced-tuning/system-identification-mode.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-flow-control.html
https://mavlinkhud.com/field-manual/mavlink-interface/log-data.html

PARAM_MAP_RC (ID 50) UNSUPPORTED

Summary

Bind a parameter to an RC channel.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. Parameter tuning via RC channels is handled internally via the
TUNE parameter and RCx_OPTION settings, not via this MAVLink message.

Theoretical Use Cases

Dynamic parameter tuning via RC.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 346 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/rc-channels.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

PARAM_EXT_REQUEST_READ (ID 320) UNSUPPORTED

Summary

The PARAM_EXT_REQUEST_READ message is part of the MAVLink Extended Parameter Protocol. This
protocol was designed to overcome limitations of the original parameter protocol (e.g., small index size,
lack of type safety for strings/arrays).

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot relies on the robust and widely supported standard parameter protocol (PARAM_REQUEST_READ ,
PARAM_VALUE). For large datasets or complex configuration, it utilizes the MAVLink FTP

(FILE_TRANSFER_PROTOCOL) to transfer parameter files or logs, rather than the intermediate Extended
Parameter Protocol.

Intended Data Fields (Standard)

target_system / target_component : Targeted component.
param_id : Parameter id, terminated by NULL if the length is less than 16 human-readable chars.
param_index : Parameter index. Set to -1 to use the param_id .

Theoretical Use Cases

1. Exceeding 65k Parameters:

Scenario: A massive system with more than 65,535 parameters (the limit of the standard
protocol's int16 index).
Action: The Extended Protocol allows for larger indices, enabling access to the full parameter
set.

2. Long String Parameters:

Scenario: Storing a long URL or API key as a parameter.
Action: The standard protocol is limited to 4 bytes (float/int32). The Extended Protocol
supports variable-length types, allowing full strings to be read natively.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 347 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-request-read.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-value.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-ftp.html
https://mavlinkhud.com/field-manual/mavlink-interface/file-transfer-protocol.html

PARAM_EXT_REQUEST_LIST (ID 321) UNSUPPORTED

Summary

The PARAM_EXT_REQUEST_LIST message is used to request a full list of parameters from a component using
the MAVLink Extended Parameter Protocol.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot uses PARAM_REQUEST_LIST (21) for listing parameters.

Intended Data Fields (Standard)

target_system / target_component : Targeted component.

Theoretical Use Cases

1. High-Latency Links:

Scenario: Syncing parameters over a very slow satellite link.
Action: The Extended Protocol can be more efficient for specific data types, potentially
reducing the overhead compared to the standard protocol's float conversions.

2. Type Safety:

Scenario: A GCS wants to ensure it never misinterprets a bitmask as a float.
Action: The Extended Protocol explicitly carries type information for every parameter,
eliminating ambiguity during the sync process.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 348 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-request-list.html

PARAM_EXT_VALUE (ID 322) UNSUPPORTED

Summary

The PARAM_EXT_VALUE message is the response to a PARAM_EXT_REQUEST_READ or

PARAM_EXT_REQUEST_LIST request. It contains the value of a parameter in the Extended Parameter Protocol
format.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot uses PARAM_VALUE (22) for parameter values.

Intended Data Fields (Standard)

param_id : Parameter id.
param_value : Parameter value (up to 128 bytes).
param_type : Parameter type (MAV_PARAM_EXT_TYPE).
param_count : Total number of parameters.
param_index : Index of this parameter.

Theoretical Use Cases

1. Transferring Structs:

Scenario: Configuring a complex fence boundary defined by a struct.
Action: The 128-byte payload of PARAM_EXT_VALUE allows transmitting small structures or
arrays as a single atomic parameter update, rather than breaking them into 32 separate float
parameters.

2. 64-bit Integers:

Scenario: Storing a precise 64-bit timestamp or large integer counter.
Action: The standard protocol truncates to 32-bit floats (lossy). PARAM_EXT_VALUE supports
uint64 natively.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 349 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/param-ext-request-read.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-ext-request-list.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-value.html

PARAM_EXT_SET (ID 323) UNSUPPORTED

Summary

The PARAM_EXT_SET message is used to set the value of a parameter using the MAVLink Extended

Parameter Protocol.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot uses PARAM_SET (23) for setting parameter values.

Intended Data Fields (Standard)

target_system / target_component : Targeted component.
param_id : Parameter id.
param_value : Parameter value (up to 128 bytes).
param_type : Parameter type (MAV_PARAM_EXT_TYPE).

Theoretical Use Cases

1. Atomic Configuration:
Scenario: Setting an IP address.
Action: Instead of setting 4 separate octet parameters, the GCS sends one PARAM_EXT_SET
with the full string "192.168.1.50", ensuring the IP doesn't become invalid in the middle of the
update process.

2. 64-bit Precision:
Scenario: Setting a precise UTC time offset.
Action: Sending a int64 value directly ensures no precision is lost to floating-point
representation.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 350 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-set.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-value.html

PARAM_EXT_ACK (ID 324) UNSUPPORTED

Summary

The PARAM_EXT_ACK message is a response to a PARAM_EXT_SET command in the MAVLink Extended

Parameter Protocol, indicating success or failure.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

ArduPilot uses the standard PARAM_VALUE broadcast as an implicit acknowledgement of a PARAM_SET .

Intended Data Fields (Standard)

param_id : Parameter id.
param_value : Parameter value.
param_type : Parameter type.
param_result : Result code (PARAM_ACK_ACCEPTED , PARAM_ACK_VALUE_UNSUPPORTED , etc.).

Theoretical Use Cases

1. Explicit Error Handling:
Scenario: A user tries to set a parameter to an invalid value.
Action: The standard protocol just ignores it (or maybe sends a STATUSTEXT).
PARAM_EXT_ACK allows the drone to reply with PARAM_ACK_VALUE_UNSUPPORTED , giving the
GCS immediate, programmatic feedback that the write failed.

2. Transaction Confirmation:
Scenario: Automated configuration script.
Action: The script waits for PARAM_EXT_ACK with PARAM_ACK_ACCEPTED before proceeding to
the next step, ensuring robust configuration sequence.

SIMULATION

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 351 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/param-ext-set.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-value.html
https://mavlinkhud.com/field-manual/mavlink-interface/param-set.html
https://mavlinkhud.com/field-manual/mavlink-interface/statustext.html

HIL_STATE (ID 90) UNSUPPORTED

Summary

Hardware in the loop state.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not support this message. It uses HIL_STATE_QUATERNION (115) for HIL simulation to avoid
gimbal lock singularities associated with Euler angles.

Theoretical Use Cases

Legacy HIL simulation.

HIL_CONTROLS (ID 91) UNSUPPORTED

Summary

Hardware in the loop control outputs.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Sending control surface outputs to a simulator.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 352 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/hil-state-quaternion.html
https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html

HIL_RC_INPUTS_RAW (ID 92) UNSUPPORTED

Summary

Raw RC inputs for HIL.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Injecting RC input into a simulation.

HIL_ACTUATOR_CONTROLS (ID 93) UNSUPPORTED

Summary

HIL actuator controls.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message.

Theoretical Use Cases

Sending actuator commands to a simulator.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 353 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html

HIL_SENSOR (ID 107) DEPRECATED / UNSUPPORTED

Summary

The HIL_SENSOR message was designed to allow external simulators to provide raw sensor data (IMU,
Barometer, Magnetometer) to the flight controller during Hardware-In-The-Loop (HIL) simulation. ArduPilot
no longer supports this message. It has been deprecated and removed from the core libraries in favor of
the more robust and higher-performance Software-In-The-Loop (SITL) architecture.

Status

Deprecated / Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

ArduPilot has transitioned away from MAVLink-based HIL for sensors. Historically, messages like
HIL_SENSOR were used with simulators like X-Plane or older versions of Gazebo. Modern ArduPilot
workflows use SITL, where sensor data is injected via specialized backend classes (e.g.,
AP_InertialSensor_SITL) that communicate with simulators using high-bandwidth JSON/UDP protocols
or shared memory, rather than the bandwidth-limited MAVLink stream.

Absence: There is no mapping for MAVLINK_MSG_ID_HIL_SENSOR (107) in the GCS_MAVLink
libraries.
Parameters: Legacy parameters like HIL_MODE are now marked as unused in the firmware source
code.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
xacc : X acceleration (m/s^2).
yacc : Y acceleration (m/s^2).
zacc : Z acceleration (m/s^2).
xgyro : Angular speed around X axis (rad/s).
ygyro : Angular speed around Y axis (rad/s).
zgyro : Angular speed around Z axis (rad/s).
xmag : X Magnetic field (Gauss).
ymag : Y Magnetic field (Gauss).
zmag : Z Magnetic field (Gauss).
abs_pressure : Absolute pressure (hectopascal).
diff_pressure : Differential pressure (hectopascal).
pressure_alt : Altitude calculated from pressure.
temperature : Temperature (degrees celsius).
fields_updated : Bitmap for fields that have updated since last message, bit 0 = xacc, bit 12:
temperature.

Recommendation

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 354 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Developers looking to perform simulations should use the SITL system. If external sensor injection is
required on physical hardware, consider using the VISION_POSITION_ESTIMATE (102) or GPS_INPUT (232)
pipelines, which remain active and supported.

Key Codebase Locations

ArduPlane/Parameters.h: Shows HIL_MODE is unused.
libraries/AP_HAL/AP_HAL_Boards.h: Explicitly marks HIL sensor constants as
HAL_INS_HIL_UNUSED .

HIL_OPTICAL_FLOW (ID 114) UNSUPPORTED

Summary

Simulated optical flow sensor data.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None

Description

ArduPilot does not implement this message. It likely uses standard OPTICAL_FLOW (100) or direct sensor
injection for simulation.

Theoretical Use Cases

Simulating optical flow.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 355 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/vision-position-estimate.html
https://mavlinkhud.com/field-manual/mavlink-interface/gps-input.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/Parameters.h
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_HAL/AP_HAL_Boards.h
https://mavlinkhud.com/field-manual/ekf-failsafes/optical-flow-fusion.html
https://mavlinkhud.com/field-manual/mavlink-interface/optical-flow.html

HIL_STATE_QUATERNION (ID 115) UNSUPPORTED

Summary

The HIL_STATE_QUATERNION message is defined in MAVLink to provide the full ground-truth state of a
vehicle (position, attitude, velocity, and acceleration) from a simulator to the flight controller. ArduPilot
does not implement this message.

Status

Unsupported

Directionality

TX (Transmit): None
RX (Receive): None (Ignored)

Analysis

Like HIL_SENSOR (107), this message is part of the legacy MAVLink-based Hardware-In-The-Loop (HIL)
architecture. ArduPilot has migrated its simulation strategy to the Software-In-The-Loop (SITL) system,
which uses higher-performance, non-MAVLink protocols for state injection.

Absence: There is no handler for MAVLINK_MSG_ID_HIL_STATE_QUATERNION (115) in any of
ArduPilot's GCS or state estimation libraries.
Alternative: Developers using ArduPilot's SITL should use the built-in simulator drivers which
handle state synchronization automatically without using this MAVLink packet.

Data Fields

time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot).
attitude_quaternion : Vehicle attitude expressed as normalized quaternion (w, x, y, z).
rollspeed : Body frame roll / phi angular speed (rad/s).
pitchspeed : Body frame pitch / theta angular speed (rad/s).
yawspeed : Body frame yaw / psi angular speed (rad/s).
lat : Latitude (degE7).
lon : Longitude (degE7).
alt : Altitude (meters).
vx : Ground X Speed (Latitude) (cm/s).
vy : Ground Y Speed (Longitude) (cm/s).
vz : Ground Z Speed (Altitude) (cm/s).
ind_airspeed : Indicated airspeed (cm/s).
true_airspeed : True airspeed (cm/s).
xacc : X acceleration (mG).
yacc : Y acceleration (mG).
zacc : Z acceleration (mG).

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp: Lacks a handler for ID 115.

MAVLINK MESSAGE REFERENCE
https://mavlinkhud.com
Page 356 of 356

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/build-system/sitl-architecture.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/mavlink-interface/hil-sensor.html
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-quaternion.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp

