
MISSION PLANNING

REFERENCE
ARDUPILOT COMMAND IMPLEMENTATION GUIDE

GENERATED 2026 // MAVLINK HUD SYSTEMS

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 1 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

Mission Planning Reference

NAVIGATION

NAV_FENCE_RETURN_POINT (5000) / VERTEX (5001-5002) / CIRCLE (5003-5004)

NAV_WAYPOINT

NAV_LOITER_UNLIM

NAV_LOITER_TURNS

NAV_LOITER_TIME

NAV_RETURN_TO_LAUNCH

NAV_LAND

NAV_TAKEOFF

NAV_LOITER_TO_ALT

NAV_SPLINE_WAYPOINT

NAV_ALTITUDE_WAIT

NAV_VTOL_TAKEOFF

NAV_VTOL_LAND

NAV_DELAY

NAV_PAYLOAD_PLACE

NAV_RALLY_POINT

NAV_SCRIPT_TIME

NAV_ATTITUDE_TIME

CONDITION-COMMANDS

CONDITION_DELAY

CONDITION_DISTANCE

CONDITION_YAW

DO-COMMANDS

DO_JUMP

DO_CHANGE_SPEED

DO_SET_HOME

DO_SET_RELAY (181) / DO_REPEAT_RELAY

DO_SET_SERVO (183) / DO_REPEAT_SERVO

DO_RETURN_PATH_START

DO_LAND_START

DO_GO_AROUND

DO_PAUSE_CONTINUE

DO_SET_REVERSE

DO_SET_ROI (201) / DO_SET_ROI_LOCATION (195) / DO_SET_ROI_NONE

DO_DIGICAM_CONFIGURE (202) / DO_DIGICAM_CONTROL

DO_MOUNT_CONTROL

DO_SET_CAM_TRIGG_DIST

DO_FENCE_ENABLE

DO_PARACHUTE

DO_INVERTED_FLIGHT

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 2 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

DO_GRIPPER

DO_AUTOTUNE_ENABLE

DO_SET_RESUME_REPEAT_DIST

DO_SPRAYER

DO_SEND_SCRIPT_MESSAGE

DO_AUX_FUNCTION

DO_GUIDED_LIMITS

DO_ENGINE_CONTROL

DO_GIMBAL_MANAGER_PITCHYAW

DO_WINCH

CAMERA

SET_CAMERA_ZOOM

SET_CAMERA_FOCUS

SET_CAMERA_SOURCE

IMAGE_START_CAPTURE (2000) / IMAGE_STOP_CAPTURE

VIDEO_START_CAPTURE (2500) / VIDEO_STOP_CAPTURE

OTHER

JUMP_TAG (600) / DO_JUMP_TAG

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 3 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

NAVIGATION

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 4 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

NAV_FENCE_RETURN_POINT (5000) / VERTEX (5001-5002) / CIRCLE

(5003-5004) (ID 0)

Summary

The NAV_FENCE family of commands defines the geometry of ArduPilot's Geofence system directly within

the mission list. This allows the vehicle to carry its own "Containment Logic" in non-volatile memory,
ensuring that even if the ground station link is lost, the drone remains bound by the pre-approved spatial

boundaries.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives these commands during a mission upload (specifically when

using the MAVLink Fence Protocol).

Commands and Storage

5000: Return Point: The "Safe Zone" where the drone will fly if a fence breach occurs. (Only 1
allowed).

5001: Polygon Inclusion: The drone must stay inside the shape defined by these vertices.

5002: Polygon Exclusion: The drone must not enter the shape.

5003: Circle Inclusion: A circular keep-in zone.

5004: Circle Exclusion: A circular keep-out zone.
Mechanism: Stored as specialized location items in the AP_Mission buffer.

Execution (Engineer's View)

Containment Mathematics

The AC_Fence library implements Point-in-Polygon (PIP) algorithms to monitor the vehicle's position.

1. Ray Casting: For polygons (5001, 5002), the autopilot mathematically casts a ray from the vehicle's

position. If the number of intersections with the polygon edges is odd, the vehicle is inside.
2. Distance-Squared: For circles (5003, 5004), the autopilot calculates the 2D distance:

If for an Inclusion circle, a breach is triggered.

3. The Floor and Ceiling: While not defined by these commands, the Geofence system also monitors

altitude via global parameters like FENCE_ALT_MAX .

Data Fields (MAVLink)

param1 (Count/Radius): Vertex count for polygons, or Radius (m) for circles.

x (Latitude): Vertex coordinate.

y (Longitude): Vertex coordinate.

z (Altitude): Reserved.

D =2 (Lat ​ −v Lat ​) +c
2 (Lon ​ −v Lon ​)c 2

D > Radius

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 5 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/parameters/FENCE.html#FENCE_ALT_MAX

Theory: The "Safe Pipe"

NAV_FENCE commands enable Mission-Geometric Coupling.

The Problem: A drone is programmed to fly a path. But what if a sensor fails and the drone drifts?

The Solution: By wrapping the NAV_WAYPOINT items with a NAV_FENCE_POLYGON_VERTEX_INCLUSION

sequence, the operator defines a high-integrity "Pipe." The drone is physically unable to exit this
pipe while the mission is active.

Practical Use Cases

1. Sensitive Airspace Protection:

Scenario: A drone is mapping near an airport runway.

Action: Use NAV_FENCE_POLYGON_VERTEX_EXCLUSION to draw a box around the runway. The

drone will treat this as a "Solid Object" and trigger a failsafe if it approaches the boundary.
2. Indoor/Hangar Safety:

Scenario: Flying inside a warehouse.

Action: NAV_FENCE_CIRCLE_INCLUSION centered on the hangar to ensure the drone never

crashes into the walls if it loses its local positioning fix.

Key Parameters

FENCE_TYPE : Bitmask selection of which fences are active (Circle, Polygon, etc.).
FENCE_MARGIN : The distance (meters) before the boundary where the drone will begin to brake.

Key Codebase Locations

libraries/AC_Fence/AC_Fence.cpp: Ray-casting and distance math.

libraries/GCS_MAVLink/MissionItemProtocol_Fence.cpp: Fence packet parsing.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 6 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/navigation.html#NAV_WAYPOINT
https://mavlinkhud.com/parameters/FENCE.html#FENCE_TYPE
https://mavlinkhud.com/parameters/FENCE.html#FENCE_MARGIN
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_Fence/AC_Fence.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol_Fence.cpp

NAV_WAYPOINT (ID 16)

Summary

The NAV_WAYPOINT command is the fundamental building block of autonomous missions. It defines a 3D

coordinate (Latitude, Longitude, Altitude) that the vehicle must navigate to. Depending on the vehicle type

and parameters, the vehicle may either stop at the waypoint or transition smoothly through it towards the

next destination.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload (MISSION_ITEM or
MISSION_ITEM_INT).

Mission Storage (AP_Mission)

When a NAV_WAYPOINT is stored in ArduPilot's EEPROM, the parameters are packed for efficiency:

Copter: param1 (Delay) is stored in the p1 field.

Plane: param2 (Acceptance Radius) and param3 (Pass-by Distance) are packed into the p1 field.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command is triggered in ModeAuto::do_nav_wp (mode_auto.cpp).

1. Path Generation: The location is passed to the AC_WPNav library. ArduCopter uses S-Curve

trajectory generation to ensure smooth acceleration and deceleration.

2. Cornering Logic:

If Delay (p1) is 0, the flight controller looks ahead to the next waypoint. It plans a path that
rounds the corner, maintaining velocity.

If Delay (p1) is greater than 0, the vehicle is forced to stop exactly at the coordinate and wait

for the specified time before proceeding.

3. Yaw Control: The vehicle will typically face the next waypoint unless a CONDITION_YAW or ROI

command has overridden the heading logic.

ArduPlane Implementation

In Plane, the logic resides in commands_logic.cpp .

1. L1 Controller: Plane uses an L1 guidance algorithm which creates a lateral acceleration command to

guide the aircraft onto the track between waypoints.
2. Acceptance Radius (p2): Defines a cylinder around the waypoint. As soon as the aircraft enters this

cylinder, the waypoint is considered "complete." If set to 0, the global WP_RADIUS parameter is

used.

3. Pass-By (p3): Allows the plane to start the turn early. If the aircraft comes within p3 meters of the

waypoint, it transitions to the next leg.

Data Fields (MAVLink)

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 7 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item-int.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1547
https://mavlinkhud.com/field-manual/advanced-tuning/input-shaping.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/mission-planning/condition-commands.html#CONDITION_YAW
https://mavlinkhud.com/field-manual/navigation-mission/l1-control-logic.html
https://mavlinkhud.com/field-manual/navigation-mission/l1-control-logic.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/parameters/WP.html#WP_RADIUS
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html

param1 (Delay): Time to loiter at the waypoint in seconds (Copter only).

param2 (Acceptance Radius): Distance in meters at which the waypoint is considered reached

(Plane only).
param3 (Pass-by Distance): For planes, the distance at which the aircraft should begin its turn

towards the next waypoint.

param4 (Yaw): Desired yaw angle (Copter only).

x (Latitude): Target latitude.

y (Longitude): Target longitude.
z (Altitude): Target altitude.

Practical Use Cases

1. Survey Grid:

Scenario: Mapping a field with a camera.

Action: A series of NAV_WAYPOINT commands are used to define the "lawnmower" pattern.

Delay is set to 0 for continuous flight.
2. Inspection Stop:

Scenario: Inspecting a power line insulator.

Action: The drone flies to a NAV_WAYPOINT positioned near the insulator with a Delay of 5

seconds, allowing the camera to capture high-quality images while stationary.

Key Codebase Locations

ArduCopter/mode_auto.cpp:1547: do_nav_wp implementation for Copter.
ArduPlane/commands_logic.cpp: Plane mission command logic.

libraries/AP_Mission/AP_Mission.cpp:1065: Mission storage packing for waypoints.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 8 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1547
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L1065

NAV_LOITER_UNLIM (ID 17)

Summary

The NAV_LOITER_UNLIM command instructs the vehicle to fly to a specified location and loiter (circle or

hover) there indefinitely. This is a "blocking" command; the mission will not proceed to the next waypoint

unless the pilot manually skips the item or changes the flight mode.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Packet Param 3 (Radius/Direction):
Stored in the internal p1 field.

Radius: The absolute value is stored as a 16-bit integer (meters).

Direction: The sign indicates direction (- = Counter-Clockwise, + = Clockwise).

Packet Param 4 (Yaw/XTrack):

For Copter, param4 represents the desired yaw (0 to 360 deg).
For Plane, param4 > 0 enables "Tangent Exit" crosstracking.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_loiter_unlimited (mode_auto.cpp).

1. Target Acquisition: The location is passed to the AC_WPNav library.

2. Behavior:
The copter flies to the target Lat/Lon/Alt.

It enters WP_NAV loiter mode, holding position against wind using the GPS/INS solution.

Heading: The vehicle will face the next waypoint (if one exists) or hold the current heading,

unless overridden by a CONDITION_YAW command.

ArduPlane Implementation

In Plane, the logic resides in commands_logic.cpp and verify_loiter_unlim .

1. Loiter Radius: The plane uses the param3 radius. If param3 is 0, it defaults to the global

WP_LOITER_RAD parameter.

2. Orbit Direction:
Positive Radius: Clockwise.

Negative Radius: Counter-Clockwise.

3. L1 Controller: The plane maintains the orbit using L1 guidance, adjusting bank angle to compensate

for wind drift.

Data Fields (MAVLink)

param1 : Empty.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 9 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/mission-planning/condition-commands.html#CONDITION_YAW
https://mavlinkhud.com/parameters/WP.html#WP_LOITER_RAD
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/navigation-mission/l1-control-logic.html
https://mavlinkhud.com/field-manual/navigation-mission/l1-control-logic.html
https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html

param2 : Empty.

param3 (Radius): Radius in meters. Positive = Clockwise, Negative = Counter-Clockwise. If 0, uses

default.
param4 (Yaw/XTrack): Desired Yaw (deg) [Copter] or XTrack location [Plane].

x (Latitude): Target latitude.

y (Longitude): Target longitude.

z (Altitude): Target altitude.

Theory: The L1 Loiter Logic (Plane)

For fixed-wing aircraft, loitering is not static; it is a dynamic energy management state.

Wind Compensation: To maintain a perfect circle over the ground, the plane must vary its bank

angle and ground speed.

Downwind: Ground speed increases; bank angle must increase to increase centripetal force (

).

Upwind: Ground speed decreases; bank angle must decrease.

Practical Use Cases

1. Observation Point:
Scenario: A surveillance drone needs to watch a specific intersection for an unknown

duration.

Action: The operator inserts a NAV_LOITER_UNLIM command. The drone holds station until

the operator commands it to "Resume Mission" or "Return to Launch".

2. Holding Pattern:
Scenario: Air traffic control (ATC) requires a delay before landing.

Action: The aircraft enters a holding pattern at a safe altitude.

Key Codebase Locations

ArduCopter/mode_auto.cpp: do_loiter_unlimited implementation.

libraries/AP_Mission/AP_Mission.cpp:1085: Parameter packing for storage.

F ​ =c

​

r
mv

2

extBankAngle ∝ arctan ​(
g ⋅ r
v ​

ground
2

)

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 10 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/flight-modes/copter-smart-rtl.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L1085

NAV_LOITER_TURNS (ID 18)

Summary

The NAV_LOITER_TURNS command instructs the vehicle to fly to a specified location and orbit it for a

specific number of full 360-degree rotations. This is commonly used to ensure a camera has multiple

opportunities to capture a target or to allow a vehicle to shed altitude/airspeed before a landing approach.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

ArduPilot uses complex bit-packing to store the number of turns and the radius within the limited EEPROM
space.

Turns (Param 1):

Stored in the low byte of p1 .

Supports fractional turns (e.g., 1.5 turns) by multiplying by 256 and setting a "Fractional" bit in

storage.
Radius (Param 3):

Stored in the high byte of p1 .

If the radius is > 255m, it is stored divided by 10, and a "Large Radius" bit is set.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, this command utilizes the AC_CircleNav library via ModeAuto::do_circle (mode_auto.cpp).

1. Transition: The copter first flies to the edge of the circle (CIRCLE_MOVE_TO_EDGE).

2. Tracking: Once on the perimeter, it begins counting the cumulative angle traveled.

3. Completion: The command completes when:

4. Yaw: The vehicle can be configured to face the center, face the direction of travel, or hold a fixed

heading via the CIRCLE_YAW_BEHAVE parameter.

ArduPlane Implementation

In Plane, the logic resides in Plane::verify_loiter_turns .

1. L1 Orbit: The plane enters an L1 loiter at the specified radius.
2. Cumulative Counting: The autopilot integrates the change in bearing to the center to track

rotations.

3. Exit Strategy: Unlike Copter, Plane implements a Secondary Heading Goal. Once the turns are

completed, the plane does not immediately exit. It continues orbiting until it is pointing toward the

next waypoint, ensuring a smooth tangential exit.

​ ≥
2π

∣Total Angle Traveled∣
Target Turns

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 11 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html
https://mavlinkhud.com/parameters/CIRCLE.html#CIRCLE_YAW_BEHAVE
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html

Data Fields (MAVLink)

param1 (Turns): Number of full orbits to complete.

param2 : Empty.

param3 (Radius): Orbit radius in meters. Positive = Clockwise, Negative = Counter-Clockwise.

param4 (XTrack):
0: Cross-track from the center of the loiter.

1: Cross-track from the tangent exit location (Plane only).

x (Latitude): Center of the orbit.

y (Longitude): Center of the orbit.

z (Altitude): Target altitude.

Theory: Angular Momentum vs. Ground Track

In the presence of wind, a constant airspeed orbit results in a "drifted" ground track. ArduPilot's L1

controller mathematically solves for the bank angle required to maintain a perfect circle over the ground.

Wind Speed (): Affects the ground speed ().

Maximum Bank Angle: Constrained by ROLL_LIMIT_DEG . If the wind is too high, the plane may be

unable to maintain the radius and will "blow out" of the circle.

Practical Use Cases

1. Aerial Cinematography:

Scenario: A photographer wants a 360-degree reveal of a mountain peak.

Action: Use NAV_LOITER_TURNS with Turns = 1 and CIRCLE_YAW_BEHAVE = 1 (Face
Center). The drone will orbit the peak while the camera stays locked on the target.

2. Communications Relay:

Scenario: A plane acts as a data link between a ground station and a distant rover.

Action: Loiter for 50 turns over the rover's location to provide persistent coverage.

Key Parameters

CIRCLE_RADIUS : Default radius if mission radius is 0.
CIRCLE_RATE : Maximum angular speed (deg/s) for the orbit.

WP_LOITER_RAD : (Plane) Default loiter radius.

Key Codebase Locations

ArduCopter/mode_auto.cpp:2256: verify_circle implementation.

ArduPlane/commands_logic.cpp:740: verify_loiter_turns implementation.

V ​w V ​g

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 12 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/field-manual/navigation-mission/l1-control-logic.html
https://mavlinkhud.com/field-manual/navigation-mission/l1-control-logic.html
https://mavlinkhud.com/parameters/ROLL.html#ROLL_LIMIT_DEG
https://mavlinkhud.com/parameters/CIRCLE.html#CIRCLE_RADIUS
https://mavlinkhud.com/parameters/CIRCLE.html#CIRCLE_RATE
https://mavlinkhud.com/parameters/WP.html#WP_LOITER_RAD
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2256
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L740

NAV_LOITER_TIME (ID 19)

Summary

The NAV_LOITER_TIME command instructs the vehicle to fly to a location and loiter (hover or circle) for a

specific duration in seconds. The timer begins only after the vehicle has reached the target coordinate.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Time (Param 1): Stored in the internal p1 field as a 16-bit integer (seconds).

Significance: Since it uses all 16 bits for time, there is no room in the packed mission structure to
store a custom radius for this specific command. It will always use the vehicle's default loiter radius.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_loiter_time (mode_auto.cpp).

1. Waypoint Entry: The copter flies to the target Lat/Lon/Alt using the standard S-Curve path.

2. Timer Start: The loiter_time variable is initialized to 0. Once reached_wp_destination()
returns true, the current system time is recorded.

3. Completion: The command completes when:

ArduPlane Implementation

In Plane, the logic resides in Plane::verify_loiter_time .

1. Target Radius: Always uses the global WP_LOITER_RAD parameter.

2. Timer Logic: Similar to Copter, the timer starts only when reached_loiter_target() is true.
3. Exit Heading: Once the time expires, Plane transitions to a secondary goal: verify_loiter_heading. It

will continue orbiting until it points toward the next mission item, ensuring it exits the circle on a

tangent.

Data Fields (MAVLink)

param1 (Time): Duration to loiter in seconds.

param2 : Empty.

param3 : (Ignored by ArduPilot storage).
param4 (Yaw): Desired Yaw angle (deg).

x (Latitude): Target location.

y (Longitude): Target location.

z (Altitude): Target altitude.

millis() − startTime ≥ Param1 ⋅ 1000

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 13 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/field-manual/advanced-tuning/input-shaping.html
https://mavlinkhud.com/field-manual/mavlink-interface/system-time.html
https://mavlinkhud.com/parameters/WP.html#WP_LOITER_RAD
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Theory: Time vs. Turns

While NAV_LOITER_TURNS is distance-dependent, NAV_LOITER_TIME is purely temporal.

Wind Impact: In a high-wind scenario, a Plane might complete fewer turns in 60 seconds than in a

no-wind scenario because it spends more time fighting the headwind.

Consistency: For a Copter (multirotor), LOITER_TIME is the preferred method for creating pauses in
a mission (e.g., waiting for a camera buffer to clear).

Practical Use Cases

1. Timed Surveillance:

Scenario: A security drone must orbit a gate for exactly 5 minutes every hour.

Action: Use NAV_LOITER_TIME with Time = 300 .

2. Sensor Warm-up:
Scenario: A specialized gas sensor requires 30 seconds of stable airflow to calibrate.

Action: Insert a NAV_LOITER_TIME at the start of the survey grid to allow the sensor to

stabilize.

Key Parameters

WP_LOITER_RAD : (Plane) Controls the circle size.

LOITER_REPOSITION : (Copter) Allows the pilot to "nudge" the loiter position with stick inputs without
breaking the mission.

Key Codebase Locations

ArduCopter/mode_auto.cpp:1738: do_loiter_time implementation.

ArduPlane/commands_logic.cpp:710: verify_loiter_time implementation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 14 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/navigation.html#NAV_LOITER_TURNS
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-signing-security.html
https://mavlinkhud.com/field-manual/flight-modes/copter-stabilize.html
https://mavlinkhud.com/parameters/WP.html#WP_LOITER_RAD
https://mavlinkhud.com/parameters/LOIT.html#LOITER_REPOSITION
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1738
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L710

NAV_RETURN_TO_LAUNCH (ID 20)

Summary

The NAV_RETURN_TO_LAUNCH (RTL) command instructs the vehicle to return to the home location or a

designated rally point. This command is the primary safety mechanism for terminating a mission and

returning the aircraft to the operator.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (Failsafe trigger).

Mission Storage (AP_Mission)

Packing: This command contains no additional parameters (param1 through param7 are unused in

missions). It simply serves as a state-change marker to trigger the vehicle's RTL mode.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_RTL() (mode_auto.cpp).

1. State Transition: The vehicle switches from AUTO mode to RTL mode.
2. Safety Logic:

Climb: The vehicle first climbs to the RTL_ALT (or stays at current altitude if already higher,

depending on RTL_CLIMB_MIN).

Return: It flies in a straight line towards Home.

Descent: Once over home, it hovers for the duration of RTL_LOIT_TIME before initiating the
final land.

ArduPlane Implementation

In Plane, the logic resides in Plane::verify_RTL (commands_logic.cpp).

1. Path Planning: Plane identifies the "best" return location, which could be the Home point or the
nearest Rally Point.

2. Altitude Management: The aircraft targets the RTL_ALTITUDE (Plane specific).

3. Orbit: Upon arrival, the plane enters a loiter (circle) at the return point. Unlike Copter, a standard

Plane RTL does not automatically land unless the mission specifically contains a landing sequence

or a landing failsafe is triggered.

Data Fields (MAVLink)

param1 to param7 : Reserved / Unused.

Theory: The "Cone of Safety"

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 15 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/rally-point.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/parameters/RTL.html#RTL_ALT
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/parameters/RTL.html#RTL_CLIMB_MIN
https://mavlinkhud.com/parameters/RTL.html#RTL_LOIT_TIME
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp
https://mavlinkhud.com/parameters/RALLY.html
https://mavlinkhud.com/parameters/RTL.html#RTL_ALTITUDE
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html

A critical concept in RTL logic is the Return Cone.

Problem: If a drone is very far away, returning at a low altitude might hit terrain. If it's very close,

climbing to a high "Return Altitude" is a waste of energy.
Solution: Advanced ArduPilot configurations use a "Safe Return Path" or Rally Points to ensure the

vehicle always has a clear line of sight to a safe recovery zone.

Practical Use Cases

1. Mission Completion:

Scenario: A mapping mission has finished its last photo transect.

Action: The mission list ends with NAV_RETURN_TO_LAUNCH to bring the drone back to the
takeoff area for recovery.

2. Radio Failsafe:

Scenario: The control link between the GCS and the drone is severed.

Action: The internal failsafe logic injects a NAV_RETURN_TO_LAUNCH command (equivalent) to

recover the asset automatically.

Key Parameters

RTL_ALT : (Copter) Altitude to return at.

RTL_ALTITUDE : (Plane) Altitude to return at.

RTL_RADIUS : (Plane) Radius of the loiter circle over home.

Key Codebase Locations

ArduCopter/mode_auto.cpp:2184: verify_RTL implementation.

ArduPlane/commands_logic.cpp:795: verify_RTL implementation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 16 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://mavlinkhud.com/parameters/RTL.html#RTL_ALT
https://mavlinkhud.com/parameters/RTL.html#RTL_ALTITUDE
https://mavlinkhud.com/parameters/RTL.html#RTL_RADIUS
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2184
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L795

NAV_LAND (ID 21)

Summary

The NAV_LAND command initiates the final descent and landing sequence. This command transitions the

vehicle from flight to a grounded state, typically concluding with the motors disarming once the autopilot

detects a successful touchdown.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (Guided Mode).

Mission Storage (AP_Mission)

Packet Param 1 (Abort Alt):

Plane: Stored in the internal p1 field as a 16-bit integer (meters). This defines the altitude to

climb to if the landing is aborted.

Packet Param 4 (Yaw):

Plane: Stored in the loiter_ccw field if param4 is negative (used for deepstall direction).

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_land (mode_auto.cpp).

1. Vertical Descent: The copter descends at the speed specified by LAND_SPEED .

2. Touchdown Detection: The flight controller monitors the throttle and vertical velocity. If the throttle

is at minimum and the altitude is not changing for a specific duration, it sets the "Landed" flag.
3. Disarm: Once "Landed" is confirmed, the motors are automatically disarmed.

4. Repositioning: If LAND_REPOSITION is enabled, the pilot can "nudge" the copter horizontally during

the descent to avoid obstacles.

ArduPlane Implementation

In Plane, the logic resides in the AP_Landing library and Plane::do_land .

1. Flare Logic: The plane follows a glideslope until it reaches the LAND_FLARE_ALT . At this point, it

raises the nose and cuts the throttle to "flare" for a smooth touchdown.

2. Abort Support: If the pilot triggers an abort or the vehicle enters a go-around state, it climbs to the

"Abort Altitude" specified in the command's param1 .
3. Deepstall (Advanced): For airframes without wheels, Plane supports "Deepstall" landing, where the

aircraft intentionally stalls its wing at high altitude to fall vertically onto a soft target (like a net or tall

grass).

Data Fields (MAVLink)

param1 (Abort Alt): Altitude to climb to on abort (Plane only).

param2 : Empty.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 17 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/deepstall.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/parameters/LAND.html#LAND_SPEED
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/parameters/LAND.html#LAND_REPOSITION
https://mavlinkhud.com/parameters/LAND.html#LAND_FLARE_ALT

param3 : Empty.

param4 (Yaw): Desired yaw heading (Copter only).

x (Latitude): Target landing point.
y (Longitude): Target landing point.

z (Altitude): Target altitude (typically 0).

Theory: The Ground Effect

As a multicopter nears the ground (within ~0.5m), it enters Ground Effect. The downwash from the rotors

creates a high-pressure cushion that increases lift efficiency.

The Hazard: If the autopilot is not tuned correctly, this extra lift can cause the vehicle to "bounce"
off the cushion, making it difficult to detect a true touchdown.

The Code: ArduPilot's landing detector uses a robust statistical filter to distinguish between ground

effect bounces and a firm touchdown.

Practical Use Cases

1. Standard Mission End:

Scenario: A mapping mission completes its grid and returns to the takeoff point.
Action: The last item is NAV_LAND at the Home coordinates.

2. Emergency Forced Landing:

Scenario: The battery reaches a critical level during a mission.

Action: The GCS or onboard script sends a MAV_CMD_NAV_LAND at the vehicle's current

location to terminate the flight safely.

Key Parameters

LAND_SPEED : Descent rate in cm/s during final landing.
LAND_ALT_LOW : Altitude (cm) below which the land speed is reduced to the "slow" rate.

LAND_FLARE_ALT : (Plane) Altitude to begin the flare.

Key Codebase Locations

ArduCopter/mode_auto.cpp:1651: do_land implementation.

ArduPlane/commands_logic.cpp:402: do_land implementation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 18 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/advanced-tuning/harmonic-notch-filtering.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/parameters/LAND.html#LAND_SPEED
https://mavlinkhud.com/parameters/LAND.html#LAND_ALT_LOW
https://mavlinkhud.com/parameters/LAND.html#LAND_FLARE_ALT
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1651
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L402

NAV_TAKEOFF (ID 22)

Summary

The NAV_TAKEOFF command instructs the vehicle to lift off from the ground and climb to a specified

altitude. This is typically the first command in an autonomous mission.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (Guided Mode).

Mission Storage (AP_Mission)

Packet Param 1 (Pitch/Ignored):
Plane: Minimum pitch angle during takeoff (degrees).

Copter: Ignored (usually 0).

Packet Param 7 (Altitude):

Target altitude in meters.

Note: The frame of reference depends on the mission command frame (Relative, Absolute, or
Terrain).

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_takeoff , which utilizes the Mode::_TakeOff class logic

(takeoff.cpp).

1. State Machine:
The copter verifies it is armed and on the ground.

It spools up motors to the THROTTLE_UNLIMITED state.

2. Climb Logic:

The vertical position controller is fed a target altitude curve.

Departure: If the copter is still on the ground, it slews the throttle until it detects a climb
(acceleration > threshold) or throttle saturation.

No Navigation Zone: If WP_NAVALT_MIN is set, the copter climbs straight up without

horizontal navigation until it clears the "danger zone" (e.g., fence posts, people).

3. Completion: Takeoff is considered complete when the target altitude is reached (within a tolerance).

ArduPlane Implementation

In Plane, the logic resides in Plane::do_takeoff (commands_logic.cpp).

1. Pitch Target: The aircraft aims for the pitch angle specified in param1 . If 0, it defaults to a safe

minimum (typically 10-15 degrees depending on tuning).

2. Heading Lock: The plane locks its heading to the ground course projected towards the next
waypoint. It uses the rudder (and potentially differential thrust) to fight crosswinds while on the

ground.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 19 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/takeoff.cpp
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp

3. Throttle Management: Throttle is clamped to maximum until the TKOFF_THR_MIN_ACC (acceleration)

or TKOFF_THR_MIN_SPD (airspeed) thresholds are met, preventing premature motor spindown.

Data Fields (MAVLink)

param1 (Pitch): Minimum pitch angle in degrees (Plane only).
param2 : Empty.

param3 : Empty.

param4 (Yaw): Desired Yaw angle (deg). NaN to use current heading.

x (Latitude): Target latitude (optional, used for initial heading alignment).

y (Longitude): Target longitude (optional).
z (Altitude): Target altitude in meters.

Theory: The "No-Nav" Zone

A critical concept in autonomous takeoff is the "No-Nav" Zone (controlled by WP_NAVALT_MIN).

Problem: GPS positions drift. If a drone tries to navigate horizontally while still touching the ground,

the landing gear might snag on grass or uneven terrain, causing a tip-over (Dynamic Rollover).

Solution: The autopilot suppresses all horizontal position corrections (Roll/Pitch for Copter) until the
vehicle has climbed to a safe altitude (e.g., 2 meters). It effectively shoots straight up like a rocket

before engaging the navigation controller.

Practical Use Cases

1. Hand Launch (Plane):

Scenario: Launching a fixed-wing surveyor without a runway.

Action: The pilot shakes the plane to arm it (Shake-to-Wake). The NAV_TAKEOFF command

manages the throttle delay and initial climb out, ensuring the prop doesn't spin up until the
plane is thrown.

2. Confined Area (Copter):

Scenario: Taking off from a deep urban canyon or forest clearing.

Action: WP_NAVALT_MIN is set to 15m. The NAV_TAKEOFF command ensures the drone rises

vertically above the treeline before attempting to fly to the first waypoint.

Key Codebase Locations

ArduCopter/takeoff.cpp: Copter takeoff state machine.

ArduPlane/commands_logic.cpp:372: Plane takeoff logic.

libraries/AP_Mission/AP_Mission.cpp: Command unpacking.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 20 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/takeoff.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L372
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp

NAV_LOITER_TO_ALT (ID 31)

Summary

The NAV_LOITER_TO_ALT command instructions the vehicle to fly to a location and loiter until a target

altitude is reached. This is an essential "climb/descend" command for missions where altitude changes

must be handled safely before continuing to the next waypoint.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Radius (Param 2): Stored in the internal p1 field as a 16-bit integer (meters).
Significance: This command does support a custom radius in EEPROM storage, unlike

NAV_LOITER_TIME .

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_loiter_to_alt (mode_auto.cpp).

1. Vertical Convergence: The copter holds the XY position while the vertical controller (Z) targets the
altitude specified in param7 (packet's z field).

2. Completion: The command completes only when:

reached_destination_xy is true (vehicle is over the coordinate).

reached_alt is true (vertical error is within tolerance).

ArduPlane Implementation

In Plane, the logic resides in Plane::verify_loiter_to_alt .

1. Stuck Detection: ArduPilot includes a safety feature for planes. If the plane has been loitering but is

unable to achieve the target altitude (e.g., due to low power or extreme downdrafts), it will

eventually time out and report "Loiter to alt was stuck" to the GCS, allowing the mission to continue
rather than circling until the battery dies.

2. Exit Strategy: Once altitude is reached, the plane continues loitering until its heading aligns with the

next waypoint (Tangent Exit).

Data Fields (MAVLink)

param1 (Heading Required): If 1, the aircraft will not leave the loiter until heading toward the next

waypoint (Plane only).

param2 (Radius): Orbit radius in meters.
param3 : Empty.

param4 (XTrack): Exit tangent control (Plane).

x (Latitude): Target location.

y (Longitude): Target location.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 21 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/mission-planning/navigation.html#NAV_LOITER_TIME
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

z (Altitude): Target altitude.

Theory: Spiral Climbs and Energy Management

For fixed-wing aircraft, LOITER_TO_ALT is safer than a direct waypoint climb.

Stall Prevention: By climbing in a circle, the aircraft maintains a consistent airspeed and bank angle.
A direct climb might result in a high pitch angle and potential stall if the autopilot attempts to climb

too aggressively.

Thermal Hunting: In glider modes (SOAR), LOITER_TO_ALT is used to stay within a rising thermal

until a safe cruise altitude is reached.

Practical Use Cases

1. Mountain Clearance:

Scenario: A drone needs to cross a 2000m ridge from a takeoff point at 500m.
Action: Place a NAV_LOITER_TO_ALT at 2100m before the ridge waypoint. This ensures the

drone circles and gains the required altitude before attempting the crossing.

2. Safe Landing Approach:

Scenario: A plane is returning at high altitude and needs to descend to 50m for a landing
flare.

Action: Use NAV_LOITER_TO_ALT to spiral down to 50m over the runway threshold,

preventing an overspeed approach.

Key Parameters

WP_LOITER_RAD : Default radius.

ALT_HOLD_RTL : (Plane) Minimum altitude for RTL/Loiter safety.

Key Codebase Locations

ArduCopter/mode_auto.cpp:2175: verify_loiter_to_alt implementation.
ArduPlane/commands_logic.cpp:766: verify_loiter_to_alt implementation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 22 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html
https://mavlinkhud.com/parameters/WP.html#WP_LOITER_RAD
https://mavlinkhud.com/parameters/ALT.html#ALT_HOLD_RTL
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2175
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L766

NAV_SPLINE_WAYPOINT (ID 82)

Summary

The NAV_SPLINE_WAYPOINT command defines a 3D coordinate that the vehicle must pass through using a

curved, "spline" trajectory. Unlike the standard linear waypoint, which produces sharp corners, the spline

waypoint calculates a smooth path that considers the position of the previous and next waypoints to ensure

the vehicle never has to come to a complete stop.

Status

Supported (ArduCopter Only)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Packet Param 1 (Delay): Stored in the internal p1 field as a 16-bit integer (seconds).

Packet Param 2-4: Empty.

x, y, z: Target Latitude, Longitude, and Altitude.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_spline_wp (mode_auto.cpp).

1. Catmull-Rom Spline: ArduPilot uses a modified Catmull-Rom spline algorithm. To calculate the

curve for the current segment (Segment B), the algorithm requires four points:

: The waypoint before the previous one.

: The previous waypoint (start of the curve).

: The current spline waypoint (target).

: The next mission item (used to determine the exit velocity vector).

2. Velocity Control: The spline ensures that the velocity vector at is tangent to the curve, allowing

for high-speed passes without the "jerk" associated with linear cornering.

3. Completion: If Delay (p1) is 0, the waypoint is considered complete as soon as the vehicle

passes through the coordinate, allowing it to transition immediately to the next leg. If Delay > 0 ,
the vehicle will decelerate to a stop at the coordinate and wait before continuing.

Data Fields (MAVLink)

param1 (Delay): Hold time in seconds at the waypoint.

x (Latitude): Target latitude.

y (Longitude): Target longitude.

z (Altitude): Target altitude.

Theory: The Hermite Spline Formulation

The path between waypoints and is defined by a cubic polynomial in terms of time :

P ​0

P ​1

P ​2

P ​3

P ​2

P ​1 P ​2 t ∈ [0, 1]

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 23 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/spline-trajectories.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1614
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html

Where:

 are the positions.

 are the tangent vectors (velocities) at those points, derived from the surrounding waypoints.

Practical Use Cases

1. Cinematic Fly-bys:

Scenario: A drone needs to fly a smooth arc around a building.
Action: Use a sequence of NAV_SPLINE_WAYPOINT items. The resulting path will be a fluid

curve, preventing the "robotic" stop-and-turn behavior of standard waypoints.

2. Obstacle Avoidance in Speed Runs:

Scenario: A racing drone needs to navigate a series of gates at maximum speed.

Action: Spline waypoints allow the drone to maintain its kinetic energy by "rounding" the
corners optimally.

Key Parameters

WPNAV_SPEED : Maximum horizontal speed between waypoints.

WPNAV_ACCEL : Maximum acceleration used to define the spline's "tightness."

Key Codebase Locations

ArduCopter/mode_auto.cpp:1614: Spline waypoint initialization.

libraries/AC_WPNav/AC_WPNav.cpp: The core spline math implementation.

P(t) = (2t −3 3t +2 1)P ​ +1 (t −3 2t +2 t)T ​ +1 (−2t +3 3t)P ​ +2
2 (t −3 t)T2

2

P ​,P ​1 2

T ​,T ​1 2

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 24 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/WPNAV.html#WPNAV_SPEED
https://mavlinkhud.com/parameters/WPNAV.html#WPNAV_ACCEL
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1614
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_WPNav/AC_WPNav.cpp

NAV_ALTITUDE_WAIT (ID 83)

Summary

The NAV_ALTITUDE_WAIT command is a specialized mission item designed for high-altitude balloon

launches or gliders. It puts the vehicle into an "Idle" or "Wait" state until it reaches a target altitude or a

specific vertical speed, allowing for autonomous activation after a balloon burst or a release from a mother-

ship.

Status

Supported (ArduPlane Only)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Altitude (Param 1): Target altitude (meters).

Descent Rate (Param 2): Vertical speed (m/s) to trigger completion (e.g., detecting a burst).

Wiggle Time (Param 3): Frequency (seconds) to move control surfaces to prevent freezing in

extreme cold.

Packing: Stored in the altitude_wait content struct.

Execution (Engineer's View)

High Altitude Logic

The command is managed in Plane::do_altitude_wait (commands_logic.cpp).

1. Idle State: The autopilot sets auto_state.idle_mode = true . In this state, servos are held at trim,

and the motor is typically disabled.

2. The "Wiggle": At high altitudes (), temperatures drop below . Lubricants in servos

can thicken or freeze. ArduPilot uses Param 3 to periodically cycle the servos, using internal

friction to generate enough heat to keep the linkages moving.

3. Burst Detection: The autopilot monitors the vertical velocity (). If becomes more negative than

Param 2 (indicating the balloon has burst and the vehicle is falling), it completes the command

immediately.

4. Completion: Once the target altitude is reached or a burst is detected, the mission advances to the
next item (usually a NAV_TAKEOFF or WAYPOINT), and full flight control is restored.

Data Fields (MAVLink)

param1 (Alt): Target altitude (m).

param2 (Descent): Descent rate (m/s).

param3 (Wiggle): Time between wiggles (s).

param4 to param7 : Unused.

Theory: Energy Conservation in Near-Space

In a balloon-launch mission, the vehicle is a passenger for 90\% of the ascent.

> 15km −50 C∘

V ​z V ​z

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 25 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L90
https://mavlinkhud.com/mission-planning/navigation.html#NAV_TAKEOFF

Thermal Management: Passive electronics cooling is non-existent in the thin upper atmosphere. By

idling the CPU and servos, the vehicle minimizes internal heat generation until the "Real" flight

begins.
Pressure Dynamics: The autopilot uses the EKF's altitude solution, which fuses barometric and GPS

data. At very high altitudes, barometric pressure becomes non-linear; ArduPilot's AP_Baro library

handles the transition to GPS-dominant altitude sensing safely.

Practical Use Cases

1. Weather Balloon Glider:

Scenario: A glider is carried to 30,000m by a balloon.
Action: NAV_ALTITUDE_WAIT (Alt: 30000, Descent: 5m/s, Wiggle: 60s) . The drone stays

"asleep" during the 2-hour ascent, wiggling every minute to stay limber, and wakes up the

moment the balloon pops.

2. Drop-Test:

Scenario: Dropping a test airframe from a larger plane.
Action: Mission starts with NAV_ALTITUDE_WAIT to detect the rapid descent after release.

Key Parameters

TKOFF_THR_DELAY : Often used after this command to delay motor start until clear of the balloon

debris.

Key Codebase Locations

ArduPlane/commands_logic.cpp:90: Mission command initialization.

ArduPlane/pullup.cpp: Transition to active flight after wait.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 26 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/TKOFF.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L90
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/pullup.cpp

NAV_VTOL_TAKEOFF (ID 84)

Summary

The NAV_VTOL_TAKEOFF command instructs a QuadPlane (or Tilt-Rotor) to lift off vertically using its

multicopter motors and then transition to forward, fixed-wing flight. This command is distinct from a

standard NAV_TAKEOFF , as it explicitly manages the high-energy state transition between hovering and

cruising.

Status

Supported (ArduPlane / QuadPlane Only)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Packing: ArduPilot stores the command in the standard location structure. The altitude is extracted

from the z field of the MAVLink packet.

Execution (Engineer's View)

ArduPlane (QuadPlane) Implementation

In QuadPlane, the command triggers QuadPlane::do_vtol_takeoff (quadplane.cpp).

1. Vertical Phase:

The vehicle uses the vertical position controller (pos_control) to rise to the target altitude.

Time-to-Altitude Estimate: The autopilot calculates the expected duration of the climb using

the following kinematic model:

2. Transition Phase:

Once the vertical target is reached, the autopilot begins the Transition to Fixed-Wing.

It engages the forward motor (pusher) while maintaining multicopter attitude control.

Once the airspeed reaches the ARSPD_FBW_MIN , the multicopter motors are phased out, and
the vehicle becomes a standard airplane.

Data Fields (MAVLink)

t ​ =accel ​

a

V ​ − V ​max z

d ​ =accel V ​ ⋅z t ​ +accel ​a ⋅
2
1

t ​accel
2

t ​ =total max(t ​, 0) +accel max ​, 0(
V ​max

d ​ − d ​total accel
)

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 27 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/navigation.html#NAV_TAKEOFF
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/quadplane.cpp#L3298
https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/parameters/ARSPD.html#ARSPD_FBW_MIN

param1 : Empty.

param2 : Empty.

param3 : Empty.
param4 (Yaw): Target heading (degrees).

x (Latitude): Target latitude.

y (Longitude): Target longitude.

z (Altitude): Target altitude (meters).

Theory: The "V-Alpha" Transition

The transition from vertical to horizontal flight is the most dangerous phase of flight for a VTOL aircraft.

Wing Loading: During transition, lift is shared between the vertical rotors and the wing.

Pitch Control: As forward speed increases, the elevators gain authority, but the multicopter pitch

controller is still active. ArduPilot uses a "Blend" logic to ensure smooth control handover.

Stall Risk: If the transition is too slow, the battery may deplete. If too fast, the aircraft may pitch up

violently due to the increased airspeed over the wing.

Practical Use Cases

1. Runway-Free Long Endurance:

Scenario: A fixed-wing plane needs to map 100km of pipeline but must take off from a small

jungle clearing.

Action: Use NAV_VTOL_TAKEOFF to rise 30m above the trees before accelerating into high-

efficiency fixed-wing mode.
2. Shipboard Launch:

Scenario: Launching from a moving vessel.

Action: VTOL takeoff allows the aircraft to clear the deck and masts vertically before

engaging the pusher motor to match the ship's speed and move away safely.

Key Parameters

Q_TAKEOFF_ALT : Default altitude if mission altitude is 0.

Q_TRANSITION_MS : Duration of the forward motor ramp-up.
Q_TILT_MAX : (Tilt-Rotor only) Maximum tilt angle during transition.

Key Codebase Locations

ArduPlane/quadplane.cpp:3298: VTOL takeoff initialization.

ArduPlane/quadplane.cpp:3390: Transition logic handler.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 28 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/parameters/Q.html#Q_TAKEOFF_ALT
https://mavlinkhud.com/parameters/Q.html#Q_TRANSITION_MS
https://mavlinkhud.com/parameters/Q.html#Q_TILT_MAX
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/quadplane.cpp#L3298
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/quadplane.cpp#L3390

NAV_VTOL_LAND (ID 85)

Summary

The NAV_VTOL_LAND command instructs a hybrid aircraft (QuadPlane) to transition from fixed-wing cruise

to multicopter mode and perform a vertical descent to a precise location. This allows long-range fixed-wing

assets to land in confined spaces without a runway.

Status

Supported (ArduPlane / QuadPlane Only)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a RTL/Failsafe

action.

Mission Storage (AP_Mission)

Packet Param 1 (Options): Stored in the internal p1 field. This bitmask allows for advanced landing

behaviors, such as "Descending Loiter" before the final drop.

Execution (Engineer's View)

ArduPlane (QuadPlane) Implementation

In QuadPlane, the command triggers a multi-stage state machine (quadplane.cpp).

1. Back-Transition:
The aircraft approaches the target waypoint in fixed-wing mode.

It cuts the forward motor and engages the VTOL motors (multicopter) as it decelerates below

the stall speed.

2. Approach:

Spiral Descent: If configured, the aircraft loiters over the landing point while descending.
Wind Alignment: The autopilot attempts to align the vehicle's heading into the wind to

minimize lateral drift during the hover phase.

3. Final Descent:

The vehicle uses the multicopter vertical controller to descend at Q_LAND_SPEED .

It uses the landing_detect logic to verify touchdown before disarming.

Data Fields (MAVLink)

param1 (Options): Bitmask for landing behavior.

param2 : Empty.

param3 : Empty.

param4 (Yaw): Desired heading for landing.

x (Latitude): Target landing location.
y (Longitude): Target landing location.

z (Altitude): Final altitude (typically 0).

Theory: The Q-Approach

The "Q-Approach" is a sophisticated landing method designed for high-performance VTOLs.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 29 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/quadplane.cpp
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://mavlinkhud.com/parameters/Q.html#Q_LAND_SPEED
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Aerodynamic Transition: Unlike multicopters, QuadPlanes have significant wing lift. If they descend

too quickly while moving forward, the wing can generate asymmetric lift (if rolling), leading to

instability.
Airbrake Effect: ArduPilot can use the multicopter motors as "airbrakes" by spinning them up at low

power while still in forward flight, creating high drag to slow the aircraft down for the final hover.

Practical Use Cases

1. Precision Recovery:

Scenario: A 3-meter wingspan drone returning to a 10m x 10m clearing.

Action: NAV_VTOL_LAND ensures the aircraft flies the long-distance return at high efficiency,
then converts to a hovering drone for a pin-point landing.

2. Autonomous Charging Dock:

Scenario: A drone landing on a robotic charging platform.

Action: Use NAV_VTOL_LAND in conjunction with a Precision Landing sensor (IR/Camera) to

land within centimeters of the charging pins.

Key Parameters

Q_TRANS_DECEL : Deceleration rate (m/s/s) during back-transition.

Q_LAND_FINAL_ALT : Altitude above ground at which the aircraft enters its final, slower descent

phase.

Q_FWD_THR_USE : Allows the pusher motor to assist with station-keeping in high winds during the

vertical descent.

Key Codebase Locations

ArduPlane/quadplane.cpp: Main VTOL landing handler.
libraries/AP_Landing/AP_Landing.cpp: Shared landing library.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 30 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/precision-landing.html
https://mavlinkhud.com/parameters/Q.html#Q_TRANS_DECEL
https://mavlinkhud.com/parameters/Q.html#Q_LAND_FINAL_ALT
https://mavlinkhud.com/parameters/Q.html#Q_FWD_THR_USE
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/quadplane.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Landing/AP_Landing.cpp

NAV_DELAY (ID 93)

Summary

The NAV_DELAY command pauses the vehicle's navigation progress for a specified duration or until a

specific UTC time. Unlike CONDITION_DELAY (which is a mission-logic gate), NAV_DELAY is a navigation-

level command that usually involves the vehicle hovering or loitering at its current location.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Duration (Param 1): Seconds to delay (relative).
Time (Param 2-4): Hour, Minute, and Second (UTC) for absolute time delay.

Packing: Stored in the nav_delay content struct.

Execution (Engineer's View)

Delay Logic

Execution is handled by ModeAuto::do_nav_delay (mode_auto.cpp).

1. Timer Modes:
Relative: The timer starts the moment the vehicle reaches the waypoint.

Absolute (UTC): The mission will not proceed until the onboard GPS clock matches the

requested UTC time. This requires a valid GPS lock and PPS (Pulse Per Second)

synchronization.

2. Vehicle State: While delaying, the vehicle maintains its current coordinates.
Copter: Position Hold (Loiter).

Plane: Loiter (Orbit).

3. Resumption: Once millis() - start_time > duration , the mission state machine is released to

the next item.

Data Fields (MAVLink)

param1 (Delay): Seconds.
param2 (Hour): UTC Hour [0-23].

param3 (Min): UTC Minute [0-59].

param4 (Sec): UTC Second [0-59].

Theory: Synchronized Swarms

The UTC delay is a foundational tool for Multi-Vehicle Synchronization.

The Problem: GPS signals take different times to reach different drones. Onboard clocks can drift.
The Solution: By using UTC time (derived from the atomic clocks on GPS satellites), multiple drones

can be commanded to "Start Scan" at the exact same microsecond, regardless of when they took off

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 31 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/mission-planning/condition-commands.html#CONDITION_DELAY
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L723
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html

or how far they traveled.

Practical Use Cases

1. Golden Hour Photography:

Scenario: A drone needs to take a photo at exactly sunset.
Action: NAV_WAYPOINT -> NAV_DELAY (UTC Time of Sunset) . The drone flies to the spot

and orbits until the lighting is perfect.

2. Coordinated Drop:

Scenario: Two drones dropping a heavy net.

Action: Both missions use NAV_DELAY to synchronize the release at the same UTC second.

Key Parameters

GPS_TYPE : Required for UTC time accuracy.
WP_LOITER_RAD : (Plane) Orbit size during delay.

Key Codebase Locations

ArduCopter/mode_auto.cpp:723: Mission command intake.

ArduCopter/mode_auto.cpp:2186: Relative timer verification.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 32 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/navigation.html#NAV_WAYPOINT
https://mavlinkhud.com/parameters/GPS.html
https://mavlinkhud.com/parameters/WP.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L723
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2186

NAV_PAYLOAD_PLACE (ID 94)

Summary

The NAV_PAYLOAD_PLACE command (often called "Payload Delivery") instructions the vehicle to descend

vertically until it detects that a winch-slung or fixed payload has touched the ground. Once touchdown is

detected, the vehicle releases the payload (if a gripper is attached) and climbs back to its original altitude.

Status

Supported (ArduCopter and QuadPlane)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Packet Param 1 (Max Descent): Stored in the internal p1 field.

Unit Conversion: ArduPilot converts this value from meters to centimeters ()

before storing it in EEPROM.

x, y, z: The delivery coordinates.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_payload_place (mode_auto.cpp).

1. Approach: The drone flies to the target Lat/Lon at the current mission altitude.

2. Descent: The drone begins a vertical descent at the speed defined by PLDP_SPEED_DN .

3. Touchdown Detection: The autopilot does not use simple altitude for detection. Instead, it monitors
the Thrust/Weight Ratio.

As the payload touches the ground, the load on the motors decreases.

When the thrust required to maintain the descent rate drops below the threshold defined by

PLDP_THRESH , the autopilot considers the payload "Placed".

4. Release & Recovery:
If a gripper or winch is configured, the autopilot triggers the release action.

The drone waits for PLDP_DELAY seconds to ensure a clean release.

The drone then climbs back to the initial altitude to continue the mission.

Data Fields (MAVLink)

param1 (Max Descent): The maximum distance (meters) the vehicle is allowed to descend. If the

ground is not reached within this distance, the command is aborted to prevent a crash.
x (Latitude): Target delivery location.

y (Longitude): Target delivery location.

z (Altitude): Current flight altitude.

Theory: The Load-Sensing Algorithm

Payload delivery in high-wind or turbulent environments is difficult because the vehicle's thrust is

constantly fluctuating. ArduPilot uses a filtered approach to detect the "offloading" of weight:

cm = m ⋅ 100

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 33 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2024
https://mavlinkhud.com/parameters/PLDP.html#PLDP_SPEED_DN
https://mavlinkhud.com/parameters/PLDP.html#PLDP_THRESH
https://mavlinkhud.com/parameters/PLDP.html#PLDP_DELAY
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html

Where is the instantaneous thrust output and is the learned thrust required to

descend at a steady rate with the payload.

Practical Use Cases

1. Automated Logistics:
Scenario: Delivering a medical package to a remote village.

Action: The drone uses NAV_PAYLOAD_PLACE . It descends until the box touches the ground,

opens the gripper, and climbs away without needing the pilot to see the ground or manage

the descent manually.

2. Scientific Sensor Deployment:
Scenario: Placing a seismometer on a steep, inaccessible slope.

Action: The PLDP_THRESH logic ensures the sensor is firmly on the ground before release,

even if the terrain altitude is not perfectly known.

Key Parameters

PLDP_THRESH : The fraction of hover thrust that indicates a touchdown (Default 0.9).

PLDP_RNG_MAX : Uses a downward-facing rangefinder to prevent "false touchdowns" if the drone is
too high.

PLDP_SPEED_DN : The vertical velocity during the delivery phase.

Key Codebase Locations

ArduCopter/mode_auto.cpp:2024: Copter delivery state machine.

ArduPlane/quadplane.cpp: QuadPlane implementation.

Placed = ​ <(
T ​average_descent

T ​current
) PLDP_THRESH

T ​current T ​average_descent

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 34 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html
https://mavlinkhud.com/parameters/PLDP.html#PLDP_THRESH
https://mavlinkhud.com/parameters/PLDP.html#PLDP_RNG_MAX
https://mavlinkhud.com/field-manual/ekf-failsafes/terrain-estimation.html
https://mavlinkhud.com/parameters/PLDP.html#PLDP_SPEED_DN
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2024
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/quadplane.cpp

NAV_RALLY_POINT (ID 5100)

Summary

The NAV_RALLY_POINT command defines an alternative "Safe Harbor" location for the vehicle. Unlike the

Home position (which is usually where the drone took off), Rally Points are used as backup landing or loiter

sites that the autopilot can choose from during a failsafe or RTL event based on proximity.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives these commands during a mission upload (specifically when

using the MAVLink Rally Protocol).

Mission Storage (AP_Mission)

Packing: Rally points are stored in a dedicated region of the EEPROM, separate from the main

waypoint mission, allowing the drone to maintain its safety anchors even if the main mission is

cleared.

Quantity: ArduPilot typically supports up to 20-50 individual rally points depending on hardware.

Execution (Engineer's View)

Intelligent RTL

When an RTL (Return to Launch) is triggered:

1. Comparison: The autopilot calls calc_best_rally_or_home_location() (AP_Rally.cpp).

2. Distance Heuristic: It calculates the 2D distance to Home and all loaded Rally Points.

3. Selection: It chooses the Geographically Closest point.

4. Action: The vehicle flies to the chosen point and enters a loiter (Plane) or hover (Copter).

Data Fields (MAVLink)

x (Latitude): Rally location.

y (Longitude): Rally location.

z (Altitude): Rally location.

Theory: Distributed Recovery

Standard recovery is centralized (Home). Rally Points enable Distributed Recovery.

The Hazard: In long-distance missions (Linear Corridors), the vehicle may be 20km from Home
when a battery failsafe occurs. It might not have enough energy to return 20km.

The Solution: By placing Rally Points every 2km along the path, the autopilot ensures it never has to

fly more than 1km to find a safe "Lifeboat."

Practical Use Cases

1. Cross-Country FPV:

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 35 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/home-position.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/flight-modes/copter-smart-rtl.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Rally/AP_Rally.cpp
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

Scenario: A plane is flying between two mountain peaks.

Action: Rally points are placed at known-clear meadows. If the radio link fails, the plane flies

to the nearest meadow rather than trying to fly back over the peaks.
2. Redundant Landing Pads:

Scenario: A drone landing at a busy facility.

Action: Multiple rally points represent different landing pads. The drone chooses the one it

can reach most efficiently.

Key Parameters

RALLY_LIMIT_KM : The maximum distance the autopilot will look for a rally point.
RALLY_INCL_HOME : Defines if Home should be considered in the proximity calculation.

Key Codebase Locations

libraries/AP_Rally/AP_Rally.cpp: Proximity comparison logic.

libraries/GCS_MAVLink/MissionItemProtocol_Rally.cpp: Communication protocol for rally points.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 36 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://mavlinkhud.com/parameters/RALLY.html#RALLY_LIMIT_KM
https://mavlinkhud.com/field-manual/mavlink-interface/rally-point.html
https://mavlinkhud.com/parameters/RALLY.html#RALLY_INCL_HOME
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Rally/AP_Rally.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/MissionItemProtocol_Rally.cpp

NAV_SCRIPT_TIME (ID 42702)

Summary

The NAV_SCRIPT_TIME command is a powerful hybrid command that combines mission flow control with

Lua Scripting. Unlike the "Do" version (DO_SEND_SCRIPT_MESSAGE), NAV_SCRIPT_TIME is a Blocking

Navigation Command. The mission will not advance to the next item until the Lua script explicitly signals

completion or a timeout is reached.

Status

Supported (All Vehicles with Lua Scripting enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Command ID (Param 1): A user-defined ID the script uses to know what to do.

Timeout (Param 2): Max duration in seconds before the mission auto-advances.

Arg 1 & 2 (Param 3-4): Floats passed to the script.

Arg 3 & 4 (x, y): Integers passed to the script.

Packing: Stored in the nav_script_time content struct.

Execution (Engineer's View)

Handshake Logic

The command creates a tight loop between the Mission Engine and the Lua Virtual Machine

(AP_Scripting.cpp).

1. Trigger: The mission state machine sets the nav_scripting.done flag to false and records the

start time.
2. Script Detection: The Lua script polls mission:get_nav_script_time_id() .

3. Operation: The script performs its task (e.g., complex pattern flying or sensor analysis).

4. Completion Signal: The script calls mission:nav_script_time_done(id) .

5. Watchdog: If the script fails to call the "done" method before Param 2 seconds pass, the mission

engine logs a warning and proceeds to the next item regardless.

Data Fields (MAVLink)

param1 (ID): Custom command ID.

param2 (Timeout): Seconds.

param3 (Arg1): Float.

param4 (Arg2): Float.

x (Arg3): Int.
y (Arg4): Int.

Theory: The Co-Processor Model

NAV_SCRIPT_TIME implements an Asynchronous Co-Processor model for mission logic.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 37 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-flow-control.html
https://mavlinkhud.com/mission-planning/do-commands.html#DO_SEND_SCRIPT_MESSAGE
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Scripting/AP_Scripting.cpp
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

Decoupling: The "Heavy Lifting" (AI, Image Processing, Path Re-planning) happens in the Lua VM,

which is sandboxed and memory-managed.

Deterministic Safety: The main C++ flight code remains simple and stable. If the script crashes, the
mission watchdog (Timeout) ensures the drone doesn't loiter until it crashes.

Practical Use Cases

1. AI Search Pattern:

Scenario: A drone finds a target but needs to perform a "spiral-out" search to find more.

Action: NAV_SCRIPT_TIME (ID: 101, Timeout: 60s) . The Lua script takes control of the

position setpoints, flies the spiral, and signals "Done" once the search is complete.
2. External Hardware Sync:

Scenario: A drone landing on a robotic dock that takes 15 seconds to open.

Action: The script communicates with the dock, waits for the "Open" signal, and then

releases the mission to continue to NAV_LAND .

Key Parameters

SCR_ENABLE : Enables the scripting engine.
SCR_HEAP_SIZE : Important for complex scripts to avoid OOM errors.

Key Codebase Locations

libraries/AP_Scripting/AP_Scripting.cpp: Implementation of the "Done" signal and binding.

ArduCopter/mode_auto.cpp:2311: Verification logic.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 38 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/mission-planning/navigation.html#NAV_LAND
https://mavlinkhud.com/parameters/SCR.html#SCR_ENABLE
https://mavlinkhud.com/parameters/SCR.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Scripting/AP_Scripting.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2311

NAV_ATTITUDE_TIME (ID 42703)

Summary

The NAV_ATTITUDE_TIME command instructs the vehicle to maintain a specific attitude (Roll, Pitch, and

Yaw) and a constant climb/descent rate for a set duration. This is an advanced "Open Loop" navigation

command used for airframe testing, specialized physics research, or high-speed dashes where GPS-based

position hold is not required.

Status

Supported (ArduCopter)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Time (Param 1): Duration in seconds.

Roll (Param 2): Degrees.

Pitch (Param 3): Degrees.

Yaw (Param 4): Degrees.

Climb Rate (x): Meters per second.
Packing: Stored in the nav_attitude_time content struct.

Execution (Engineer's View)

Direct Attitude Control

The command bypasses the standard "Waypoint-to-Waypoint" navigation and interacts directly with the

Attitude Controller (mode_auto.cpp:739).

1. Targeting: The autopilot feeds the requested Roll, Pitch, and Yaw angles to the
AC_AttitudeControl library.

2. Vertical Control: The vertical position controller maintains the climb rate specified in the x field

(Param 5).

3. Horizontal Behavior: The drone drifts with the wind. Because no Lat/Lon target is provided, the

drone behaves as if it were in a manual mode (like AltHold or Stabilize) but with a robotic pilot
holding the sticks at fixed angles.

4. Completion: The mission advances once the system time exceeds Param 1 seconds from the start

of the command.

Data Fields (MAVLink)

param1 (Time): s.

param2 (Roll): deg.
param3 (Pitch): deg.

param4 (Yaw): deg.

x (Climb Rate): m/s.

Theory: Flight Dynamics Research

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 39 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L739
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/field-manual/flight-modes/copter-stabilize.html
https://mavlinkhud.com/field-manual/mavlink-interface/system-time.html

NAV_ATTITUDE_TIME is the primary tool for Empirical Aerodynamic Modeling.

The Problem: GPS navigation masks the "True" physics of the drone by constantly correcting for

error.
The Solution: By flying at a fixed pitch and roll (e.g., 5 degrees pitch forward) for 10 seconds,

engineers can measure the resulting airspeed to calculate the airframe's Drag Coefficient () and

Thrust Curve.
Safety: It is critical to ensure enough "Clear Air" is available, as the vehicle will move in the direction

of the lean without regard for geofences or waypoints during the execution.

Practical Use Cases

1. High-Speed Dash:

Scenario: A drone needs to cross a field as fast as possible.

Action: NAV_ATTITUDE_TIME (Pitch: -45, Time: 5s) . The drone tilts aggressively and
accelerates until the timer pops, ignoring GPS braking logic.

2. Structural Vibration Testing:

Scenario: Identifying resonant frequencies at specific bank angles.

Action: A script cycles through various NAV_ATTITUDE_TIME commands while recording IMU

data.

Key Parameters

ANGLE_MAX : Still limits the absolute maximum tilt to prevent tip-over.

ATC_INPUT_TC : Determines how quickly the drone snaps to the requested attitude.

Key Codebase Locations

ArduCopter/mode_auto.cpp:739: Command intake.

ArduCopter/mode_auto.cpp:2327: Timer verification.

C ​d

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 40 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/parameters/ANGLE.html#ANGLE_MAX
https://mavlinkhud.com/parameters/ATC.html#ATC_INPUT_TC
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L739
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2327

CONDITION-COMMANDS

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 41 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

CONDITION_DELAY (ID 112)

Summary

The CONDITION_DELAY command pauses the mission state machine for a specific number of seconds.

Unlike a NAV_DELAY or a loiter with time, which are navigation-level commands, CONDITION_DELAY is a

flow-control item that prevents the next mission item from starting until the timer expires.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Packet Param 1 (Time): Stored in the internal condition_value field (seconds).
Mechanism: When the mission reaches this item, it records the current system time in

condition_start .

Execution (Engineer's View)

State Machine Logic

ArduPilot's mission engine treats "Condition" commands as gates.

1. Verification: Every loop, the verify_wait_delay() function is called (mode_auto.cpp).

2. Comparison: The function checks if the elapsed time since the command started exceeds the target

delay.

3. Completion: Once the condition is met, the gate opens, and the mission state machine increments

to the next command ID.

Vehicle Behavior during Delay

It is critical to understand that CONDITION_DELAY does not stop the vehicle's movement if it was already

performing a navigation task that supports concurrent execution (though typically conditions are placed
between nav points).

Copter: If placed after a NAV_WAYPOINT , the drone will hover at that waypoint while the delay runs.

Plane: The aircraft will continue its previous navigation state (e.g., loitering) while the condition timer

counts down.

Data Fields (MAVLink)

param1 (Time): Delay time in seconds.
param2 to param7 : Unused.

Theory: Synchronous vs. Asynchronous Delays

current_time − condition_start > condition_value ⋅ 1000

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 42 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/mission-planning/navigation.html#NAV_DELAY
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/system-time.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2192
https://mavlinkhud.com/mission-planning/navigation.html#NAV_WAYPOINT

In computer science, a delay can be blocking or non-blocking.

MAVLink HUD Context: CONDITION_DELAY is a non-blocking delay for the flight controller (it still

stabilizes the airframe), but a blocking delay for the Mission Script.
Race Conditions: If a GCS sends a "Set Current Waypoint" command while a CONDITION_DELAY is

active, the timer is typically reset or abandoned as the mission engine jumps to the new index.

Practical Use Cases

1. Camera Boot-up:

Scenario: A high-end mapping camera takes 10 seconds to initialize after being powered on

via a relay.
Action: DO_SET_RELAY -> CONDITION_DELAY (10s) -> NAV_WAYPOINT .

2. Safety Buffer:

Scenario: Ensuring a drone has come to a complete, stable hover before dropping a payload.

Action: NAV_WAYPOINT -> CONDITION_DELAY (3s) -> DO_GRIPPER .

Key Parameters

MIS_OPTIONS : Can affect how the mission engine handles pauses and restarts.

Key Codebase Locations

ArduCopter/mode_auto.cpp:2192: verify_wait_delay implementation.
ArduPlane/commands_logic.cpp: Plane condition handling.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 43 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/mission-planning/do-commands.html#DO_SET_RELAY
https://mavlinkhud.com/mission-planning/do-commands.html#DO_GRIPPER
https://mavlinkhud.com/parameters/MIS.html#MIS_OPTIONS
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2192
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp

CONDITION_DISTANCE (ID 114)

Summary

The CONDITION_DISTANCE command creates a proximity-based gate in the mission. It prevents the next

mission item from starting until the vehicle is within a specific distance (meters) of the next navigation
waypoint.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Packet Param 1 (Distance): Stored in the internal condition_value field (meters).

Execution (Engineer's View)

Verification Logic

The mission engine checks the proximity in every loop cycle using verify_within_distance()

(mode_auto.cpp).

1. Distance Calculation: The flight controller calculates the 2D (horizontal) distance between the

current GPS coordinate and the coordinate of the NAV_WAYPOINT immediately following the
condition.

2. Comparison:

3. Completion: As soon as the vehicle crosses the "distance threshold," the condition returns true, and

the next command (which is usually a "Do" command like DO_DIGICAM_CONTROL) is executed.

Data Fields (MAVLink)

param1 (Distance): Distance in meters.

param2 to param7 : Unused.

Theory: The "Inner Circle"

CONDITION_DISTANCE allows for spatial triggering that is more precise than simple waypoint arrival.

Waypoint Acceptance: Standard waypoints use a radius (e.g., WP_RADIUS) to determine when to
turn.

Condition Precision: By using CONDITION_DISTANCE , you can trigger an action (like a laser fire or

camera snap) at a much tighter distance (e.g., 1 meter) than the navigation waypoint's acceptance

radius (e.g., 5 meters).

Practical Use Cases

dist_to_wp < condition_value

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 44 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2201
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/mission-planning/navigation.html#NAV_WAYPOINT
https://mavlinkhud.com/mission-planning/do-commands.html#DO_DIGICAM_CONTROL
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/parameters/WP.html#WP_RADIUS

1. Precise Photo Capture:

Scenario: A surveyor needs a photo taken exactly as the drone passes over a marker.

Action: NAV_WAYPOINT (Marker) -> CONDITION_DISTANCE (0.5m) -> DO_DIGICAM_CONTROL .
2. Obstacle Proximity Actions:

Scenario: A drone needs to turn on high-intensity landing lights as it approaches a narrow

dock.

Action: NAV_WAYPOINT (Dock) -> CONDITION_DISTANCE (10m) -> [DO_SET_SERVO]

(/mission-planning/do-commands.html#DO_SET_SERVO) (Lights ON) .

Key Parameters

WPNAV_RADIUS : (Copter) The horizontal radius used for waypoint completion; often used in

conjunction with CONDITION_DISTANCE .

Key Codebase Locations

ArduCopter/mode_auto.cpp:2201: verify_within_distance implementation.

ArduPlane/commands_logic.cpp: Plane condition handler.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 45 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/WPNAV.html#WPNAV_RADIUS
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2201
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp

CONDITION_YAW (ID 115)

Summary

The CONDITION_YAW command forces the vehicle to rotate to a specific heading. This command is a

"blocking" mission item; the mission will not advance to the next item until the aircraft has successfully

achieved the target yaw angle within a small tolerance.

Status

Supported (ArduCopter and QuadPlane Only)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Angle (Param 1): Target angle in degrees.

Rate (Param 2): Rotation speed in .

Direction (Param 3): -1 for Counter-Clockwise, 1 for Clockwise.

Relative (Param 4): 0 for Absolute (North-up), 1 for Relative (Offset from current heading).

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_yaw (mode_auto.cpp).

1. Request: The command is passed to the auto_yaw controller, which sets a FIXED yaw target.

2. Tracking: The autopilot calculates the shortest path (or the path requested by the direction

parameter) to the new heading.

3. Completion: The verification function ModeAuto::verify_yaw() checks if the current heading

matches the target:

4. Priority: Note that if a subsequent NAV_WAYPOINT command has a different yaw requirement (like

"Face Next Waypoint"), it will override the CONDITION_YAW once the condition is met and the

mission advances.

Data Fields (MAVLink)

param1 (Angle): Target angle in degrees [0-360].

param2 (Rate): Desired turn rate in .

param3 (Direction): -1: CCW, 1: CW.

param4 (Relative): 0: Absolute, 1: Relative.

param5 to param7 : Unused.

Theory: The Singularity of North

Yaw management in ArduPilot must account for the 360/0 degree wrap-around.

deg/s

∣Yaw ​ −current Yaw ​∣ <target 2∘

deg/s

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 46 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1928
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html
https://mavlinkhud.com/mission-planning/navigation.html#NAV_WAYPOINT

Angular Error: The autopilot uses the wrap_180() function to calculate the smallest error.

Magnetic vs. True: Mission angles are typically relative to Magnetic North unless the system has

been configured with a high-precision GPS (Moving Baseline) or a specific declination offset.

Practical Use Cases

1. Fixed-Camera Alignment:

Scenario: A drone is inspecting a solar panel array. The camera is fixed (no gimbal).

Action: CONDITION_YAW is used to point the entire drone airframe at the panels before the

next survey leg.

2. Antenna Tracking:
Scenario: A drone needs to point a high-gain directional antenna back at the GCS for a data

burst.

Action: CONDITION_YAW targets the bearing to the Home point.

Key Parameters

ATC_SLEW_YAW : Limits the maximum rate of change for yaw to prevent mechanical stress on the

frame.
WP_YAW_BEHAVE : Determines how the drone handles yaw during navigation between
CONDITION_YAW commands.

Key Codebase Locations

ArduCopter/mode_auto.cpp:1928: do_yaw implementation.

ArduCopter/mode_auto.cpp:2211: verify_yaw completion check.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 47 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/sensor-architecture/gps-integration.html
https://mavlinkhud.com/parameters/ATC.html#ATC_SLEW_YAW
https://mavlinkhud.com/parameters/WP.html#WP_YAW_BEHAVE
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1928
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2211

DO-COMMANDS

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 48 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

DO_JUMP (ID 177)

Summary

The DO_JUMP command provides procedural flow control within a mission. It allows the autopilot to jump

back (or forward) to a specific mission item number and repeat that sequence a set number of times. This is

the primary mechanism for creating loops (e.g., repeating a survey grid or a loiter-and-check sequence).

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Target (Param 1): The sequence number of the mission item to jump to.
Repeat Count (Param 2): The number of times to perform the jump.

Mechanism: ArduPilot maintains an internal jump_tracking array (AP_Mission.cpp) to persist the

state of each jump command across reboots or mode changes.

Execution (Engineer's View)

Logic Flow

When the mission engine encounters a DO_JUMP :

1. Check Counter: It retrieves the current num_times_run for this specific command index from the

jump_tracking RAM.

2. Comparison:

If num_times_run < Repeat Count , it increments the counter and sets the current mission

index to the Target.
If num_times_run == Repeat Count , it ignores the jump and proceeds to the next mission
item (breaking the loop).

3. Unlimited Loops: If the Repeat Count is set to a high value (like 255 or 65535, depending on the

GCS), ArduPilot can be configured to loop indefinitely.

Jump Tracking Constraints

Max Jumps: ArduPilot typically supports tracking up to 15-20 individual DO_JUMP commands in a

single mission (defined by AP_MISSION_MAX_NUM_DO_JUMP_COMMANDS).

Nested Loops: While technically possible, nesting jumps can lead to complex state behavior.

ArduPilot's tracker is indexed by the index of the jump command itself, which prevents collisions
between different loops.

Data Fields (MAVLink)

param1 (Item #): Mission sequence number to jump to.

param2 (Repeat): Total number of times to perform the jump.

param3 to param7 : Unused.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 49 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-flow-control.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2311

Theory: Finite State Machines and Halting

A mission is essentially a Linear Finite State Machine. DO_JUMP introduces Cycles into the graph.

Determinism: Because ArduPilot tracks the repeat count in non-volatile-ready RAM, the mission

remains deterministic. If the vehicle loses power and reboots, the mission can resume and

"remember" how many loops it has already completed.
The Halting Problem: Infinite loops are dangerous in autonomous flight. Always ensure a DO_JUMP

has a finite repeat count unless the vehicle is in a monitored "holding pattern" state.

Practical Use Cases

1. Survey Re-runs:

Scenario: A drone is scanning for a lost hiker. The search grid needs to be flown 3 times to

ensure coverage.
Action: WP 1 ... WP 10 -> DO_JUMP (Target: 1, Repeat: 3) .

2. Delayed Entry:

Scenario: A plane must loiter at a waypoint until a specific time, but ArduPilot's clock isn't

synchronized yet.

Action: Use a DO_JUMP to a loiter point with a small repeat count to "wait" for GCS
synchronization.

Key Parameters

MIS_RESTART : Controls whether the jump counters are reset when the mission is restarted.

Key Codebase Locations

libraries/AP_Mission/AP_Mission.cpp:2311: increment_jump_times_run implementation.

libraries/AP_Mission/AP_Mission.h: Definition of the jump tracking structure.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 50 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/MIS.html#MIS_RESTART
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2311
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.h

DO_CHANGE_SPEED (ID 178)

Summary

The DO_CHANGE_SPEED command allows the autopilot to dynamically adjust the vehicle's speed and throttle

limits during a mission. This is essential for missions that require high-speed transit between work areas but

slow, precise flight during data collection.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (Guided Mode).

Mission Storage (AP_Mission)

Speed Type (Param 1): 0 = Airspeed, 1 = Ground Speed.

Target Speed (Param 2): Target speed in m/s.

Throttle (Param 3): Desired throttle percentage (0-100).

Mechanism: Stored in the internal speed content struct.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command triggers ModeAuto::do_change_speed (mode_auto.cpp).

1. WPNav Update: The command updates the AC_WPNav library's internal speed variables.

2. Overrides:

Horizontal: Sets set_speed_xy (cm/s).

Vertical: If the type is set to climb or descent (ArduPilot extension), it updates
set_speed_up or set_speed_down .

3. Persistence: The new speed remains in effect until the end of the mission or until another

DO_CHANGE_SPEED command is encountered.

ArduPlane Implementation

In Plane, the command updates the navigation controller's target velocity.

1. Airspeed vs. Groundspeed:

If Airspeed is selected: The plane adjusts pitch and throttle to maintain the target airspeed

(IAS/EAS).

If Groundspeed is selected: The plane uses its "Min Groundspeed" logic (MIN_GNDSPD_CM)
to ensure it maintains progress against headwinds.

2. Safety Limits: The autopilot will always clamp the requested speed between ARSPD_FBW_MIN and

ARSPD_FBW_MAX .

Data Fields (MAVLink)

param1 (Type): 0:Airspeed, 1:Groundspeed, 2:Climb speed, 3:Descent speed.

param2 (Speed): Target speed in m/s.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 51 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/parameters/MIN.html#MIN_GNDSPD_CM
https://mavlinkhud.com/parameters/ARSPD.html#ARSPD_FBW_MIN
https://mavlinkhud.com/parameters/ARSPD.html#ARSPD_FBW_MAX

param3 (Throttle): Throttle setpoint (0-100). -1 to ignore.

param4 (Relative): 0: Absolute speed, 1: Offset from default.

Theory: Groundspeed vs. Airspeed

Understanding the difference is critical for safety:

Fixed-Wing: Airspeed is what keeps you in the air (lift). Changing airspeed affects your stall margin.

DO_CHANGE_SPEED in a plane is often used to fly slowly for photography or fast for "dash" legs.

Multicopter: Multicopters primarily care about Groundspeed. Airspeed is only relevant in high-wind

scenarios where "Lean Angle" limits (e.g., ANGLE_MAX) might prevent the drone from achieving the

requested groundspeed.

Practical Use Cases

1. Long Range Transit:
Scenario: A delivery drone needs to fly 10km to a destination.

Action: TAKEOFF -> DO_CHANGE_SPEED (25 m/s) -> WAYPOINT (Destination) .

2. Precision Mapping:

Scenario: A high-resolution camera requires a slow ground speed to prevent motion blur.
Action: DO_CHANGE_SPEED (5 m/s) -> WAYPOINT (Start of Grid) .

Key Parameters

WPNAV_SPEED : (Copter) Default mission speed.

TRIM_ARSPD_CM : (Plane) Default cruise airspeed.

ARSPD_FBW_MIN : Absolute minimum airspeed safety limit.

Key Codebase Locations

ArduCopter/mode_auto.cpp:1936: Copter implementation.

ArduPlane/commands_logic.cpp: Plane implementation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 52 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/parameters/ANGLE.html#ANGLE_MAX
https://mavlinkhud.com/parameters/WPNAV.html#WPNAV_SPEED
https://mavlinkhud.com/parameters/TRIM.html#TRIM_ARSPD_CM
https://mavlinkhud.com/parameters/ARSPD.html#ARSPD_FBW_MIN
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1936
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp

DO_SET_HOME (ID 179)

Summary

The DO_SET_HOME command redefines the vehicle's "Home" position. The Home position is used as the

reference point for RTL (Return to Launch), altitude-above-home calculations, and distance-from-home

failsafes.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (Guided/Command Mode).

Mission Storage (AP_Mission)

Use Current (Param 1):

1: Use the vehicle's current location as home.

0: Use the Lat/Lon/Alt provided in the command's x/y/z fields.

Packing: Stored in the standard location struct.

Execution (Engineer's View)

Logic

The command calls AP_Vehicle::set_home() (or vehicle-specific wrappers like

ModeAuto::do_set_home).

1. Safety Check: ArduPilot generally allows setting Home while disarmed. If the vehicle is armed,

setting home is typically restricted to the current location to prevent the vehicle from performing an

RTL to a dangerously distant or unreachable coordinate.
2. Coordinate Update: The EKF (Extended Kalman Filter) uses the new Home as the origin for its local

NE (North-East) coordinate system if the "Absolute Altitude" is updated.

3. GCS Notification: Upon successful update, the vehicle broadcasts a new HOME_POSITION (242)

MAVLink message to all connected Ground Control Stations.

Data Fields (MAVLink)

param1 (Flag): 1: Current Location, 0: Specified Location.
x (Latitude): New home latitude.

y (Longitude): New home longitude.

z (Altitude): New home altitude.

Theory: The EKF Origin vs. Home

It is important to distinguish between the EKF Origin and the Home Position.

EKF Origin: The absolute GPS coordinate where the Kalman Filter initialized. It never changes during
a flight.

Home Position: A user-defined coordinate used for navigation. It can be changed multiple times.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 53 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/home-position.html
https://mavlinkhud.com/field-manual/flight-modes/copter-smart-rtl.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/ekf-failsafes/ekf-core-concepts.html
https://mavlinkhud.com/field-manual/mavlink-interface/home-position.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html

Math: Internal navigation is done in meters relative to the EKF Origin. When you "Set Home,"

ArduPilot calculates the meter-offset from the Origin and stores that as the new Home reference.

Practical Use Cases

1. Mobile Landing Platform:
Scenario: A drone takes off from a moving boat.

Action: As the boat moves, the GCS periodically sends DO_SET_HOME (Current Location:

1) to ensure the drone's RTL point stays near the boat.

2. Long Corridor Missions:

Scenario: A drone is inspecting 50km of power lines.
Action: The mission can include DO_SET_HOME commands at safe landing clearings along the

route, so if a failsafe occurs, the drone flies to the nearest safe point rather than all the way

back to the start.

Key Parameters

FS_GCS_ENABL : GCS failsafe.

RTL_ALT : Altitude used when returning to the (potentially new) home.

Key Codebase Locations

ArduCopter/mode_auto.cpp:1954: do_set_home implementation.
libraries/AP_Vehicle/AP_Vehicle.cpp: Core Home management logic.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 54 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/FS.html#FS_GCS_ENABL
https://mavlinkhud.com/parameters/RTL.html#RTL_ALT
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1954
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Vehicle/AP_Vehicle.cpp

DO_SET_RELAY (181) / DO_REPEAT_RELAY (ID 182)

Summary

The DO_SET_RELAY and DO_REPEAT_RELAY commands provide simple digital control over the vehicle's

GPIO pins. Relays are typically used to trigger non-MAVLink hardware like power switches, smoke

generators, water pumps, or simple camera shutters.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (Guided Mode).

Mission Storage (AP_Mission)

Relay Number (Param 1): The index of the relay to control (typically 0-5).

State / Repeat (Param 2):

181: 0: Off, 1: On.

182: The number of times to toggle the relay.

Cycle Time (Param 3): (182 only) The duration of each on/off cycle in seconds.
Packing: Stored in the relay or repeat_relay content struct within AP_Mission .

Execution (Engineer's View)

Logic Implementation

The commands utilize the AP_ServoRelayEvents library (AP_ServoRelayEvents.cpp).

1. Pin Mapping: ArduPilot maps "Relay 0" to a physical GPIO pin on the flight controller via the

RELAY_PIN parameter.
2. Toggle Logic (Repeat):

The delay_ms is calculated as Param3 * 500 (half of the cycle time).

The relay state is flipped every delay_ms until the repeat count is exhausted.

3. Conflict Handling: If a new relay command is received for a pin currently running a "Repeat"

sequence, the existing sequence is immediately cancelled in favor of the new state.

Data Fields (MAVLink)

DO_SET_RELAY (181)

param1 (Index): Relay instance number.

param2 (State): 0: OFF, 1: ON.

DO_REPEAT_RELAY (182)

param1 (Index): Relay instance number.

param2 (Count): Number of toggle cycles.

param3 (Time): Cycle time in seconds.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 55 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ServoRelayEvents/AP_ServoRelayEvents.cpp
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/parameters/RELAY.html#RELAY_PIN
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html

Theory: PWM vs. GPIO

Most flight controller pins are configured for PWM (Pulse Width Modulation) by default to drive servos.

Relay Transformation: When a pin is assigned to a Relay, the autopilot reconfigures the hardware

timer/DMA for that pin into Digital I/O Mode.

Voltage: The output is typically 3.3V (standard microcontrollers) or 5V (level-shifted boards), which
is used to trigger a transistor or a physical mechanical relay module.

Practical Use Cases

1. Water Sprayer (Agri-Drone):

Scenario: A crop-dusting drone needs to spray only while over a specific field.

Action: WAYPOINT (Start of Field) -> DO_SET_RELAY (On) ... WAYPOINT (End of Field)

-> DO_SET_RELAY (Off) .
2. Emergency Strobe:

Scenario: A drone needs to flash its high-intensity lights during an RTL.

Action: Mission starts with DO_REPEAT_RELAY (Count: 999, Time: 1s) to create a persistent

blink.

Key Parameters

RELAY_PIN : Defines which physical pin is assigned to which relay instance.
RELAY_DEFAULT : The state (On/Off) the relay enters upon autopilot boot.

Key Codebase Locations

libraries/AP_ServoRelayEvents/AP_ServoRelayEvents.cpp: Main execution handler.

libraries/AP_Relay/AP_Relay.cpp: Low-level GPIO driver.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 56 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/RELAY.html#RELAY_PIN
https://mavlinkhud.com/parameters/RELAY.html#RELAY_DEFAULT
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ServoRelayEvents/AP_ServoRelayEvents.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Relay/AP_Relay.cpp

DO_SET_SERVO (183) / DO_REPEAT_SERVO (ID 184)

Summary

The DO_SET_SERVO and DO_REPEAT_SERVO commands allow the mission script to directly override the

PWM (Pulse Width Modulation) output of specific flight controller pins. This is used to control auxiliary

hardware like mechanical grippers, gimbal pitches (non-stabilized), or robotic arms.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Channel (Param 1): The Servo/Output number to control (typically 1-16).

PWM Value / Repeat (Param 2):

183: The target PWM value (typically 1000 to 2000 microseconds).

184: The target PWM value for the "pulsed" state.

Repeat Count (Param 3): (184 only) The number of times to pulse.
Cycle Time (Param 4): (184 only) The duration of each pulse cycle in seconds.

Packing: Stored in the servo or repeat_servo content struct.

Execution (Engineer's View)

Handling Logic

Execution is managed by AP_ServoRelayEvents::do_set_servo (AP_ServoRelayEvents.cpp).

1. Safety Check: ArduPilot checks the "Servo Function" (SERVOX_FUNCTION) of the requested pin.
If the pin is assigned to a critical flight function (e.g., Motor 1 or Aileron), the mission

command is rejected and an info message is sent to the GCS: "ServoRelayEvent: Channel

\%d is already in use".

The pin must be set to 0 (Disabled), 1 (RCPassThru), or another non-critical auxiliary

function.
2. Output: The autopilot writes the target PWM value directly to the hardware timer registry for that pin.

3. Repeat Pattern (184): The autopilot toggles between the target PWM Value and the pin's Trim

Value at the requested frequency.

Data Fields (MAVLink)

DO_SET_SERVO (183)

param1 (Index): Output channel number.

param2 (PWM): PWM value [1000-2000].

DO_REPEAT_SERVO (184)

param1 (Index): Output channel number.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 57 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ServoRelayEvents/AP_ServoRelayEvents.cpp#L30
https://mavlinkhud.com/parameters/SERVO.html

param2 (PWM): PWM value for the pulse.

param3 (Count): Number of cycles.

param4 (Time): Cycle time (seconds).

Theory: The Duty Cycle

Servos are controlled by the width of a pulse sent at a specific frequency (typically 50Hz).

Pulse Width (): 1000 s is typically "Full Left/Closed," 1500 s is "Center," and 2000 s is "Full

Right/Open."
Timing: ArduPilot's main loop handles the logic, but the actual high-precision pulse generation is

offloaded to the SoC's hardware timers (DMA/PWM) to ensure jitter-free control.

Practical Use Cases

1. Cargo Hook:

Scenario: A drone needs to drop a package at a specific waypoint.

Action: DO_SET_SERVO (Channel: 9, PWM: 2000) triggers the hook to open.

2. Bait Dropper (Fishing Drone):
Scenario: Releasing a fishing line into the surf.

Action: DO_REPEAT_SERVO (Channel: 10, PWM: 2000, Count: 2, Time: 1s) ensures the

release mechanism triggers twice to prevent a snag.

Key Parameters

SERVOX_FUNCTION : Must be configured as Disabled or Scripting for mission commands to work

on that channel.
SERVOX_MIN/MAX : Bounds for the PWM output.

Key Codebase Locations

libraries/AP_ServoRelayEvents/AP_ServoRelayEvents.cpp:30: Command verification and safety

logic.

libraries/SRV_Channel/SRV_Channels.cpp: Low-level servo output manager.

au au au au

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 58 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/SERVO.html
https://mavlinkhud.com/parameters/SERVO.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ServoRelayEvents/AP_ServoRelayEvents.cpp#L30
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/SRV_Channel/SRV_Channels.cpp

DO_RETURN_PATH_START (ID 188)

Summary

The DO_RETURN_PATH_START command defines the beginning of a safe return segment in a mission. This is

an advanced "failsafe-aware" mission marker that allows a vehicle to rejoin a pre-defined safe corridor if an

RTL is triggered, rather than flying a direct (and potentially dangerous) line back to Home.

Status

Supported (ArduPlane / All Vehicles using Mission re-entry)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Segment Boundary: This command marks the start of the safe segment. The segment ends at the
next encountered DO_LAND_START or mission end.

Coordinates: Optional. If provided, they define the geometric start of the segment.

Execution (Engineer's View)

Corridor Logic

When a vehicle using missions for return-to-launch triggers a failsafe:

1. Search: The autopilot calls get_return_path_start() (AP_Mission.cpp).
2. Closest re-entry: It identifies the segment between DO_RETURN_PATH_START and DO_LAND_START .

3. Orthogonal Projection: The autopilot calculates the closest point on that line segment to the

vehicle's current position.

4. Action: The vehicle flies to that "Re-entry Point" and then follows the mission forward towards the

landing sequence.

Data Fields (MAVLink)

param1 to param4 : Unused.

x (Latitude): Optional coordinate.

y (Longitude): Optional coordinate.

z (Altitude): Optional coordinate.

Theory: Corridor Missions

Standard RTL logic is "Point A to Home." Corridor Logic is "Point A to the nearest safe pipe, then through
the pipe to Home."

Geofence Integration: If a mission is flown through a narrow canyon or a corridor bounded by

Inclusion Fences, a direct RTL would immediately trigger a fence breach.

Geometric Join: ArduPilot mathematically treats the mission between these markers as a vector.

The vehicle joins the vector tangentially to ensure it never exits the "safe zone" during the recovery.

Practical Use Cases

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 59 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/mission-planning/do-commands.html#DO_LAND_START
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2467
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

1. Canyon Mapping:

Scenario: A drone is mapping a deep canyon. It is flying at 50m, but the canyon walls rise to

200m on either side.
Action: Place DO_RETURN_PATH_START at the canyon entrance. If the drone loses link deep in

the canyon, it will not attempt to climb and fly over the walls; it will fly back along the canyon

floor until it exits the marked segment.

2. Urban BVLOS:

Scenario: Flying along a pre-approved corridor between skyscrapers.
Action: The markers define the safe air-road. Recovery always follows the approved path.

Key Parameters

MIS_OPTIONS : Must be configured to allow Mission-based RTL.

Key Codebase Locations

libraries/AP_Mission/AP_Mission.cpp:2467: get_return_path_start logic.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 60 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/MIS.html#MIS_OPTIONS
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2467

DO_LAND_START (ID 189)

Summary

The DO_LAND_START command acts as a marker or "entry point" for the landing sequence in a mission. It is

not an active flight command itself, but rather a metadata tag that tells the autopilot where the landing-

specific mission items begin.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (to trigger an immediate mission landing).

Mission Storage (AP_Mission)

Latitude/Longitude/Altitude: Optional. If provided, they help the autopilot find the closest landing
sequence if multiple exist in a single mission.

Packing: Stored as a standard location-based mission item.

Execution (Engineer's View)

Autopilot Logic

ArduPilot uses DO_LAND_START in several critical scenarios:

1. Mission Landing Trigger: When the vehicle enters RTL or a Battery Failsafe, and the mission

contains a DO_LAND_START marker, the autopilot will skip all intermediate waypoints and jump

directly to the item following the marker to begin a structured approach and landing.

2. Closest Sequence Discovery: If a mission contains multiple landing sequences (e.g., for different

wind directions), ArduPilot's get_landing_sequence_start() function (AP_Mission.cpp) will
calculate which DO_LAND_START is geographically closest to the vehicle's current position and use

that sequence.

3. Arming Check: ArduPilot can be configured to require a DO_LAND_START in the mission as a pre-

arm safety check for certain high-value autonomous operations.

Data Fields (MAVLink)

param1 to param4 : Unused.
x (Latitude): Optional coordinate for proximity matching.

y (Longitude): Optional coordinate for proximity matching.

z (Altitude): Optional coordinate for proximity matching.

Theory: The Non-Destructive Jump

Standard missions are sequential. Failsafes usually involve returning home (RTL). DO_LAND_START enables

a Mission-Aware Failsafe.

The Problem: RTL is often a direct line that might cross restricted airspace or terrain.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 61 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2395
https://mavlinkhud.com/field-manual/navigation-mission/terrain-following.html

The Solution: By marking a landing sequence, the pilot defines a known-safe approach path (e.g.,

spiral down -> align with runway -> land). DO_LAND_START ensures the autopilot uses this "known-

good" procedure instead of a "naive" RTL.

Practical Use Cases

1. Runway Alignment (Plane):

Scenario: A plane needs to land on a narrow runway.

Action: DO_LAND_START -> WAYPOINT (Approach) -> WAYPOINT (Final) -> NAV_LAND . If a

failsafe occurs, the plane jumps to "Approach" instead of flying directly to the runway.

2. Emergency Rally Landing (Copter):
Scenario: Mapping a large forest.

Action: Include multiple DO_LAND_START markers at various clearings. The drone will choose

the closest one during a low-battery event.

Key Parameters

MIS_OPTIONS : Controls how the mission engine handles the landing sequence.

Key Codebase Locations

libraries/AP_Mission/AP_Mission.cpp:2395: get_landing_sequence_start implementation.

ArduPlane/commands_logic.cpp: Plane-specific landing sequence handling.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 62 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://mavlinkhud.com/mission-planning/navigation.html#NAV_LAND
https://mavlinkhud.com/parameters/MIS.html#MIS_OPTIONS
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2395
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp

DO_GO_AROUND (ID 191)

Summary

The DO_GO_AROUND command is an safety override used during an autonomous landing. It instructs the

vehicle to immediately abort the landing sequence, climb to a safe altitude, and typically enter a loiter or

wait for further instructions.

Status

Supported (ArduPlane and QuadPlane Only)

Directionality

RX (Receive): The vehicle receives this command as a direct override from the GCS or as an

automatic response to a landing sensor failure.

Mission Storage (AP_Mission)

Packet Param 1 (Altitude): Altitude to climb to (meters).

Mechanism: Stored as an immediate execution marker in the landing state machine.

Execution (Engineer's View)

ArduPlane Implementation

When a Go-Around is triggered:

1. State Reset: The landing state machine (Flare/Touchdown detection) is immediately terminated.
2. Climb-out: The plane applies full throttle and targets the "Abort Altitude" specified in the command

(or the last takeoff altitude).

3. Navigation: The plane typically returns to the DO_LAND_START waypoint or the waypoint

immediately preceding the landing sequence to re-attempt the approach.

QuadPlane Implementation

For hybrid VTOLs, the Go-Around behavior depends on the current stage:

Fixed-Wing Approach: Performs a standard fixed-wing abort climb.

VTOL Descent: The vehicle transitions to a multicopter climb, rising vertically to a safe height before

either loitering or transitioning back to fixed-wing flight.

Data Fields (MAVLink)

param1 (Altitude): Target altitude for the abort climb.
param2 to param7 : Unused.

Theory: Energy vs. Safety

A Go-Around is a trade-off between Impact Risk and Stall Risk.

The Hazard: During landing, a plane is at its lowest energy state (low speed, low altitude).

The Reaction: ArduPilot prioritized Airspeed first. It will prioritize gaining speed over gaining

altitude to ensure the aircraft remains controllable during the high-stress transition away from the

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 63 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/mission-planning/do-commands.html#DO_LAND_START

ground.

Practical Use Cases

1. Runway Incursion:

Scenario: A vehicle or person enters the runway while a drone is on final approach.
Action: The GCS operator clicks "Abort Landing," sending a MAV_CMD_DO_GO_AROUND . The

drone climbs away and circles until the runway is clear.

2. Lidar/Rangefinder Glitch:

Scenario: The landing Lidar fails 5 meters above the ground.

Action: ArduPilot's internal safety logic triggers an automatic Go-Around to prevent a blind
landing.

Key Parameters

TECS_LAND_SINK : Controls the sink rate that might trigger an automatic abort if exceeded.

LAND_ABORT_THR : (Plane) Throttle level used during the abort climb.

Key Codebase Locations

ArduPlane/commands_logic.cpp: Landing logic handler.

libraries/AP_Landing/AP_Landing.cpp: Shared landing abort state machine.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 64 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/terrain-estimation.html
https://mavlinkhud.com/parameters/TECS.html
https://mavlinkhud.com/parameters/LAND.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Landing/AP_Landing.cpp

DO_PAUSE_CONTINUE (ID 193)

Summary

The DO_PAUSE_CONTINUE command provides a mechanism to suspend or resume the mission's horizontal

movement without changing the flight mode. It is primarily used to "Pause" the vehicle at its current location

during a mission.

Status

Supported (ArduCopter and Rover)

Directionality

RX (Receive): The vehicle receives this command as a direct override from the GCS.

Mission Storage (AP_Mission)

Packing: This command is typically sent as an immediate command (COMMAND_LONG), not stored in
a mission. If encountered in a mission, ArduPilot treats it as a state change.

Execution (Engineer's View)

ArduCopter Implementation

In Copter, the command calls ModeAuto::pause() or ModeAuto::resume() (mode_auto.cpp).

1. WPNav Interaction: The autopilot tells the AC_WPNav library to freeze the current trajectory.

2. Position Hold: The drone enters a "GPS Position Hold" at its current coordinates.
3. Vertical Behavior: The drone maintains its current mission altitude.

4. Resumption: When Continue (1) is sent, the WPNav resumes following the path from where it

was paused.

Data Fields (MAVLink)

param1 (State): 0: Pause, 1: Continue.

param2 to param7 : Unused.

Theory: Suspending the Vector

Most flight modes are "State-based." AUTO mode is "Vector-based."

The Pause: DO_PAUSE_CONTINUE zero-scales the mission's velocity vector while keeping the PID

loops active.

Benefit: This is safer than switching to LOITER and back to AUTO , as the mission state machine

(sequence number, jump counters, timers) remains exactly where it was.

Practical Use Cases

1. Bird Incursion:
Scenario: A pilot sees a hawk approaching the drone during a mapping grid.

Action: The pilot clicks "Pause." The drone stops moving immediately. Once the bird leaves,

the pilot clicks "Continue."

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 65 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/command-long.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2339
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/flight-modes/copter-loiter.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html

2. Visual Inspection:

Scenario: During an autonomous tower inspection, the inspector needs more time to look at a

specific bracket.
Action: Send Pause , inspect, then Continue .

Key Parameters

WPNAV_ACCEL : Determines how quickly the drone stops when paused.

Key Codebase Locations

ArduCopter/mode_auto.cpp:2339: Implementation of pause/resume methods.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 66 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/WPNAV.html#WPNAV_ACCEL
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L2339

DO_SET_REVERSE (ID 194)

Summary

The DO_SET_REVERSE command tells the autopilot to change its primary direction of travel. This is used by

Rovers and Boats to backup, and by Planes equipped with reversible ESCs to perform steep descents or

reverse-thrust landings.

Status

Supported (ArduPlane, Rover, and Boat)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Reverse (Param 1):

0: Forward.

1: Reverse.

Packing: Stored in the internal p1 field.

Execution (Engineer's View)

ArduPlane Implementation

In Plane, the command enables the use of Negative Thrust (reverse_thrust.cpp).

1. ESC Configuration: Requires a bi-directional ESC (DShot or specialized PWM).

2. Navigation: The autopilot maintains its orientation but reverses the throttle output.

3. Use Case: Typically used for "Beta Range" aerodynamic braking during a steep approach to clear

obstacles on short runways.

Rover/Sub/Boat Implementation

In Rover, this command is used to navigate "Tail First."

1. Ackermann Logic: For cars, the steering logic is inverted when in reverse.

2. Pivot Turns: Skid-steer rovers use this to back out of dead ends.

Data Fields (MAVLink)

param1 (State): 1: Reverse, 0: Forward.
param2 to param7 : Unused.

Theory: Thrust Vectoring and Polarity

In standard propulsion, thrust is a scalar value . DO_SET_REVERSE redefines the propulsion model

as a signed value .

T ∈ [0, 1]
T ∈ [−1, 1]

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 67 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/control-architecture/ap-motors-the-matrix-mixer.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/reverse_thrust.cpp
https://mavlinkhud.com/field-manual/custom-airframes/dshot-backend-logic.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html

The Transition: Transitioning from forward to reverse requires the motor to come to a complete stop

(to prevent back-EMF spikes) before spinning in the opposite direction. ArduPilot's motor library

manages this "Zero-Crossing" safely.

Practical Use Cases

1. Boat Docking:

Scenario: An autonomous boat needs to back into a slip.

Action: WAYPOINT (Front of Slip) -> DO_SET_REVERSE (1) -> WAYPOINT (Back of

Slip) .

2. STOL (Short Takeoff and Landing):
Scenario: A plane landing on a very short mountain strip.

Action: After NAV_LAND flare, the mission triggers DO_SET_REVERSE (1) to use the prop as

an airbrake.

Key Parameters

USE_REV_THRUST : (Plane) Global enable for reverse thrust logic.

SERVOX_REVERSED : (Rover) Hardware-level motor direction.

Key Codebase Locations

ArduPlane/reverse_thrust.cpp: Plane-specific reverse logic.
libraries/AP_Motors/AP_Motors_Class.cpp: Low-level bidirectional motor control.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 68 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/navigation.html#NAV_LAND
https://mavlinkhud.com/parameters/USE.html#USE_REV_THRUST
https://mavlinkhud.com/parameters/SERVO.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/reverse_thrust.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Motors/AP_Motors_Class.cpp

DO_SET_ROI (201) / DO_SET_ROI_LOCATION (195) / DO_SET_ROI_NONE

(ID 197)

Summary

The "Region of Interest" (ROI) commands instruction the vehicle to point its camera (and potentially its

entire airframe) at a specific coordinate or object. This is a critical command for surveillance,
cinematography, and inspection missions where the sensor's target is independent of the vehicle's flight

path.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command (Guided Mode).

Mission Storage (AP_Mission)

Mode (Param 1):
0: No ROI (Cancels current ROI).

1: ROI at next waypoint.

2: ROI at specific mission item.

3: ROI at fixed Lat/Lon location.

Location (x, y, z): The GPS coordinates of the target (used for 195 and Mode 3).
Mechanism: Stored as a standard location item or a mode-switch item.

Execution (Engineer's View)

Gimbal and Airframe Integration

ArduPilot handles ROI via the AP_Mount and AutoYaw libraries (mode_auto.cpp).

1. 3D Geometry: The autopilot calculates the vector between the vehicle's current 3D position

(GPS/INS) and the target 3D coordinate.
2. Point of Aim:

Gimbal: If a stabilized gimbal is present, ArduPilot sends Pitch and Yaw angles to the mount

controller.

Airframe: If no gimbal is present, or if the gimbal lacks a pan (yaw) axis, the multicopter will

rotate its entire body (Yaw) to face the target while keeping the camera centered.
3. Persistence: An ROI command is "sticky." Once set, the vehicle will continue to track that coordinate

even as it flies through subsequent waypoints, until a DO_SET_ROI_NONE command is encountered

or a new ROI is defined.

Data Fields (MAVLink)

param1 (Mode): Selection between location, waypoint, or cancel.

param2 (Item #): Mission index if mode=2.
x (Latitude): Target latitude.

y (Longitude): Target longitude.

z (Altitude): Target altitude.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 69 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1978
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Theory: Trigonometry of Tracking

To point the camera, the autopilot solves for the Azimuth () and Elevation (

) angles relative to North:

The EKF solution provides high-frequency updates to these angles to ensure the camera remains locked

even during aggressive vehicle maneuvering.

Practical Use Cases

1. POI (Point of Interest) Orbit:

Scenario: Filming a lighthouse from a circling drone.
Action: DO_SET_ROI (Lighthouse) -> NAV_LOITER_TURNS . The drone circles while the

gimbal automatically tilts and pans to keep the lighthouse in the center of the frame.

2. Static Security Watch:

Scenario: A plane is patrolling a perimeter but needs to keep its camera locked on a specific

gate.
Action: DO_SET_ROI (Gate) followed by a patrol mission.

Key Parameters

MNT1_TYPE : Defines the type of gimbal hardware.

WP_YAW_BEHAVE : Must be aware that ROI will override the default "Face Next Waypoint" behavior.

Key Codebase Locations

ArduCopter/mode_auto.cpp:1975: do_roi implementation.

libraries/AP_Mount/AP_Mount.cpp: Core tracking mathematics.

ψ

theta

ψ = atan2(ΔEast, ΔNorth)

θ = atan2(ΔAlt, ​)ΔNorth + ΔEast2 2

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 70 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/navigation.html#NAV_LOITER_TURNS
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-signing-security.html
https://mavlinkhud.com/parameters/MNT.html#MNT1_TYPE
https://mavlinkhud.com/parameters/WP.html#WP_YAW_BEHAVE
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1975
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp

DO_DIGICAM_CONFIGURE (202) / DO_DIGICAM_CONTROL (ID 203)

Summary

The DO_DIGICAM_CONFIGURE and DO_DIGICAM_CONTROL commands are the legacy interface for interacting

with onboard digital cameras. While modern systems prefer the MAVLink Camera Protocol (v2), these

commands remain vital for supporting a vast array of existing hardware, including CHDK-enabled Canon

cameras, Sony NEX series via IR/Multi-port, and simple PWM-triggered DSLRs.

Status

Legacy / Supported (All Vehicles with AP_Camera enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct
command.

Mission Storage (AP_Mission)

ArduPilot uses a highly efficient packing strategy to store these complex commands:

202 (Configure): Stored in the digicam_configure struct. Includes Shutter Speed, Aperture, and

ISO.

203 (Control): Stored in the digicam_control struct. Includes Zoom absolute, Zoom step, and
Focus locking.

Packing: Both utilize the standard 15-byte mission storage limit by bit-packing smaller values where

possible.

Execution (Engineer's View)

Triggering and Handshaking

The commands are routed through the AP_Camera library (AP_Camera.cpp).

1. Direct Shutter: If Shooting Command (Param 5) is set to 1, the autopilot triggers the shutter.

2. Focus Lock: ArduPilot supports a "Half-press" logic for cameras that require focusing before the

final capture.

3. Engine Cut-off: A unique feature of DO_DIGICAM_CONFIGURE is the Engine Cut-off Time (Param 7).

For gas-powered vehicles with extreme vibration, the autopilot can momentarily kill the engine or
reduce throttle during the capture to ensure a blur-free image.

Data Fields (MAVLink)

DO_DIGICAM_CONTROL (203)

param1 (Session): 0:Ignore, 1:Show Lens, 2:Hide Lens.

param2 (Zoom): Absolute position.
param3 (Step): Zoom step (offset).

param4 (Focus): 0:Ignore, 1:Lock, 2:Unlock.

param5 (Shot): 1:Take picture.

Theory: The Latency of Mechanical Shutters

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 71 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/digicam-configure.html
https://mavlinkhud.com/field-manual/mavlink-interface/digicam-control.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L285
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html

Unlike digital sensors, mechanical shutters have Trigger Latency ().

The Drift: If a drone is flying at 20 m/s and the shutter has a 200ms lag, the photo will be taken 4

meters past the intended coordinate.

ArduPilot Compensation: High-end configurations use the CAM_FEEDBACK_PIN (Hot Shoe). When

the shutter actually fires, the camera sends a signal back to the flight controller, which then captures

the exact GPS/IMU state for that microsecond, ensuring sub-centimeter mapping accuracy.

Practical Use Cases

1. Vibration-Sensitive Long Exposure:

Scenario: A high-altitude plane taking photos in low light.

Action: DO_DIGICAM_CONFIGURE (Engine Cut-off: 0.5s) . The motor stops for half a

second, the photo is taken in still air, and the motor restarts automatically.

2. Canon CHDK Integration:
Scenario: Using a cheap Canon Point-and-Shoot for mapping.

Action: DO_DIGICAM_CONTROL sends the PWM pulse required by the CHDK script to trigger

the capture.

Key Parameters

CAM_TRIGG_TYPE : Must be set to Relay or PWM .

CAM_DURATION : The length of the shutter pulse.

Key Codebase Locations

libraries/AP_Mission/AP_Mission_Commands.cpp:115: Command parsing.
libraries/AP_Camera/AP_Camera.cpp: Core execution logic.

Δt ​shutter

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 72 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-drift.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/parameters/CAM.html#CAM_TRIGG_TYPE
https://mavlinkhud.com/parameters/CAM.html#CAM_DURATION
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission_Commands.cpp#L115
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp

DO_MOUNT_CONTROL (ID 205)

Summary

The DO_MOUNT_CONTROL command allows the mission script to set specific Pitch, Roll, and Yaw angles for a

camera mount or antenna gimbal. Unlike ROI (which targets a coordinate), MOUNT_CONTROL targets specific

body-relative or Earth-relative angles.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Pitch (Param 1): Angle in degrees.

Roll (Param 2): Angle in degrees.

Yaw (Param 3): Angle in degrees.

Mechanism: Stored in the mount_control content struct.

Execution (Engineer's View)

Controlling the Mount

ArduPilot directs these commands to the AP_Mount library (AP_Mount.cpp).

1. Angle Mapping: The command defines the target orientation.

2. Mount Mode: Encountering this command typically switches the mount to MAVLINK_TARGETING

mode.

3. Airframe Yaw Integration: A critical feature in ArduCopter: If the vehicle has a camera mount that
does not support a pan (Yaw) axis (e.g., a 2-axis gimbal), ArduPilot will rotate the entire vehicle

airframe to achieve the requested Yaw angle (mode_auto.cpp).

Data Fields (MAVLink)

param1 (Pitch): Target pitch angle (deg).

param2 (Roll): Target roll angle (deg).

param3 (Yaw): Target yaw angle (deg).
param7 (Mode): Selection between angle and rate control (if supported).

Theory: Body-Relative vs. Earth-Relative

Body-Relative: The angles are relative to the drone's nose. If the drone turns 90 degrees, the

camera turns 90 degrees.

Earth-Relative (North-Up): The camera locks onto a compass heading. If the drone turns, the

gimbal compensates to stay pointed North.
ArduPilot Default: MAV_CMD_DO_MOUNT_CONTROL is typically interpreted as Earth-Relative for Pitch

(tilt) and Yaw (pan), but Body-Relative for Roll.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 73 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/mount-control.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1987
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

Practical Use Cases

1. Vertical Mapping (Nadir):

Scenario: A surveyor needs the camera to point straight down for the entire flight.

Action: DO_MOUNT_CONTROL (Pitch: -90, Roll: 0, Yaw: 0) .

2. Forward Scouting:
Scenario: A search and rescue drone needs to look 15 degrees below the horizon and 45

degrees to the right to scan a coastline.

Action: DO_MOUNT_CONTROL (Pitch: -15, Yaw: 45) .

Key Parameters

MNT1_TYPE : Enables the gimbal driver.

MNT1_PITCH_MIN/MAX : Defines the mechanical limits to prevent servo damage.

Key Codebase Locations

libraries/AP_Mount/AP_Mount.cpp:555: Command intake.

ArduCopter/mode_auto.cpp:1987: Yaw-override logic for 2-axis gimbals.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 74 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/MNT.html#MNT1_TYPE
https://mavlinkhud.com/parameters/MNT.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp#L555
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1987

DO_SET_CAM_TRIGG_DIST (ID 206)

Summary

The DO_SET_CAM_TRIGG_DIST command enables automatic camera triggering based on the 2D distance

traveled by the vehicle. This is the primary mechanism for aerial mapping (photogrammetry), ensuring

consistent image overlap regardless of groundspeed fluctuations caused by wind.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Distance (Param 1): The distance in meters between triggers.

Shutter (Param 2): Shutter integration time (typically unused by ArduPilot, which relies on hardware-

specific drivers).

Trigger Once (Param 3): If set to 1, the camera triggers immediately upon receiving the command.

Mechanism: Stored in the cam_trigg_dist content struct within AP_Mission .

Execution (Engineer's View)

Triggering Logic

The command utilizes the AP_Camera library (AP_Camera.cpp).

1. Distance Threshold: The autopilot records the GPS position of the last trigger.

2. Continuous Check: Every loop, it calculates the 2D horizontal distance () from the last trigger

point.

3. Firing: When , the autopilot sends a signal to the camera shutter (via Relay, PWM,

MAVLink, or DroneCAN) and updates the last-trigger position.

4. Disabling: Sending this command with Param 1 = 0 disables automatic triggering.

Data Fields (MAVLink)

param1 (Distance): Meters between shots. 0 to disable.

param2 (Shutter): Integration time (ms).

param3 (Trigger): 1 to trigger one shot immediately.
param4 to param7 : Unused.

Theory: Photogrammetry Overlap

Mapping accuracy depends on Frontal Overlap (). For a camera with sensor height and focal length

, flying at altitude with a groundspeed :

Ground Sample Distance (GSD): The real-world size of one pixel.

Trigger Distance ():

d

d ≥ TriggDist

O ​f H ​s

f A V ​g

D

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 75 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/ekf-failsafes/wind-drag-fusion.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Using DO_SET_CAM_TRIGG_DIST ensures that even if the drone slows down when flying into a

headwind, the images are still taken at the mathematically correct spatial intervals to maintain the

required for 3D reconstruction.

Practical Use Cases

1. Ortho-Mosaic Mapping:

Scenario: Mapping a farm at 80\% overlap.

Action: Mission starts with DO_SET_CAM_TRIGG_DIST (20m) . The drone flies the survey grid,

and the camera fires every 20 meters.

2. Corridor Inspection:
Scenario: Inspecting a pipeline.

Action: DO_SET_CAM_TRIGG_DIST (50m) ensures high-resolution coverage without filling the

SD card with redundant images.

Key Parameters

CAM_TRIGG_TYPE : Defines if the trigger is via Relay, PWM, or MAVLink.

CAM_DURATION : How long the shutter signal is held high.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:291: Implementation of distance-based triggering.

ArduCopter/mode_auto.cpp: Integration with the mission engine.

D = Footprint ​ ⋅height (1 − O ​)f

O ​f

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 76 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/CAM.html#CAM_TRIGG_TYPE
https://mavlinkhud.com/parameters/CAM.html#CAM_DURATION
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L291
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp

DO_FENCE_ENABLE (ID 207)

Summary

The DO_FENCE_ENABLE command allows the mission script to dynamically enable or disable the vehicle's

Geofence system. This is particularly useful for missions where a drone must transition from a restricted

"test area" into an open flight corridor, or vice-versa.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command from the GCS.

Mission Storage (AP_Mission)

Enable (Param 1):

0: Disable all fences.

1: Enable all fences.

2: Disable "Floor" only (Altitude minimum).

Packing: Stored in the internal p1 field.

Execution (Engineer's View)

Dynamic Fencing Logic

Execution is handled by the AC_Fence library (AC_Fence.cpp).

1. State Change: The command updates the internal fence enable bitmask.

2. Safety Verification: If enabling the fence, the autopilot immediately checks the current vehicle

position against the fence boundaries.
3. Breech Handling: If the vehicle is already outside the boundary when the fence is enabled via

mission command, the autopilot will immediately trigger a Fence Failsafe (typically RTL or Land).

Data Fields (MAVLink)

param1 (State): 0: Disable, 1: Enable, 2: Disable Floor.

param2 to param7 : Unused.

Theory: Adaptive Airspace

Dynamic fencing enables Adaptive Airspace management.

Corridors: A mission can be "fenced" into a narrow pipe for a BVLOS transit. Once it reaches a

designated high-altitude workspace, the DO_FENCE_ENABLE (Disable) command can be used to

allow for freer movement during manual inspection tasks.

Payload Protection: A drone carrying hazardous material might enable a very tight fence only

during the transport phase, then disable it for recovery once the payload is released.

Practical Use Cases

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 77 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_Fence/AC_Fence.cpp
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html

1. Transitioning to Open Sea:

Scenario: A search-and-rescue drone launches from a crowded beach.

Action: Mission starts with Geofence Enabled. Once the drone is 500m offshore,
DO_FENCE_ENABLE (Disable) is triggered to allow it to scan a wide area without nuisance

alerts.

2. Autonomous Testing:

Scenario: Testing a new Lua script.

Action: The script is only allowed to run while the drone is inside a "Safety Box." The mission
enables the box before starting the script and disables it upon completion.

Key Parameters

FENCE_ENABLE : Global master switch for fencing.

FENCE_ACTION : Determines what happens when a fence is breached (RTL, Land, etc.).

Key Codebase Locations

libraries/AC_Fence/AC_Fence.cpp: Core fence logic.

ArduCopter/mode_auto.cpp:1008: Mission command intake.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 78 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/FENCE.html#FENCE_ENABLE
https://mavlinkhud.com/parameters/FENCE.html#FENCE_ACTION
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_Fence/AC_Fence.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1008

DO_PARACHUTE (ID 208)

Summary

The MAV_CMD_DO_PARACHUTE command triggers or manages the vehicle's emergency recovery parachute.

In a mission context, this is rarely used for standard recovery (which is usually an RTL) but is vital for "Total

Safety" missions or testing environments where a soft impact must be guaranteed at a specific stage.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct "PANIC"

command from the GCS.

Mission Storage (AP_Mission)

Action (Param 1):

0: Disable parachute release.

1: Enable parachute (Armed).

2: Release parachute (Fire immediately).

Packing: Stored in the internal p1 field.

Execution (Engineer's View)

Emergency Logic

The command utilizes the AP_Parachute library (AP_Parachute.cpp).

1. Safety Interlocks: If Release (2) is commanded, the autopilot instantly stops all flight motors

(ArduCopter/GCS_Mavlink.cpp:978). This prevents the parachute lines from tangling in the props.

2. Deployment: A high signal is sent to the assigned parachute relay or servo.
3. Logging: A "PARACHUTE" event is recorded in the DataFlash log.

Data Fields (MAVLink)

param1 (Action): 0: Disable, 1: Enable, 2: Release.

param2 to param7 : Unused.

Theory: The Point of No Return

Parachute deployment is a Terminating Event.

Motor Inhibition: Once a parachute is fired, ArduPilot will not allow the motors to restart until the
vehicle has been disarmed and rebooted.

Altitude Constraint: Parachutes require a minimum altitude to inflate. ArduPilot uses the

CHUTE_ALT_MIN parameter to prevent deployment if the vehicle is too low (which could lead to a

prop-entanglement before inflation).

Practical Use Cases

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 79 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Parachute/AP_Parachute.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L978
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/parameters/CHUTE.html#CHUTE_ALT_MIN
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html

1. Sensitive Equipment Recovery:

Scenario: A drone is carrying a $100k prototype sensor.

Action: At the end of the mission, instead of a standard landing, the mission triggers
DO_PARACHUTE (Release) over a designated soft-target area to ensure the sensor is never

subjected to a landing impact.

2. Safety Drills:

Scenario: Testing a new airframe.

Action: The GCS "Kill Switch" is mapped to DO_PARACHUTE (Release) .

Key Parameters

CHUTE_ENABLED : Global master switch.

CHUTE_TYPE : Defines if the trigger is a Relay or Servo.

CHUTE_SERVO_ON : The PWM value used to fire the chute.

Key Codebase Locations

libraries/AP_Parachute/AP_Parachute.cpp: Core deployment logic.

ArduCopter/GCS_Mavlink.cpp:978: Critical motor-kill logic.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 80 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/CHUTE.html#CHUTE_ENABLED
https://mavlinkhud.com/parameters/CHUTE.html#CHUTE_TYPE
https://mavlinkhud.com/parameters/CHUTE.html#CHUTE_SERVO_ON
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Parachute/AP_Parachute.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/GCS_Mavlink.cpp#L978

DO_INVERTED_FLIGHT (ID 210)

Summary

The DO_INVERTED_FLIGHT command instructions the autopilot to fly the aircraft upside-down. This is

primarily used in ArduPlane for aerobatics or specialized flight maneuvers.

Status

Supported (ArduPlane Only)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command from the GCS.

Mission Storage (AP_Mission)

Inverted (Param 1):
0: Normal flight (Upright).

1: Inverted flight (Upside-down).

Packing: Stored in the internal p1 field.

Execution (Engineer's View)

ArduPlane Implementation

In Plane, the command updates the auto_state.inverted_flight flag (commands_logic.cpp).

1. Attitude Target: When inverted flight is enabled, the AHRS (Attitude and Heading Reference

System) redefines the Roll target as 180 degrees.

2. Controller Inversion: The PID controllers for Aileron and Elevator must account for the inverted

state.

Pitch: Pulling "Up" on the stick while inverted will cause the aircraft to move towards the
ground.

Self-Leveling: The autopilot automatically handles the inversion of these vectors to ensure

that standard "Fly-By-Wire" (FBW) controls remain intuitive for the pilot (if in a semi-

autonomous mode) or consistent for the mission engine.

3. Oil/Fuel Handling: This command is only recommended for airframes with inverted-flight capable
propulsion systems (e.g., fuel-injected engines with header tanks or electric systems).

Data Fields (MAVLink)

param1 (State): 0: Normal, 1: Inverted.

param2 to param7 : Unused.

Theory: The Lift Vector Inversion

In normal flight, lift () acts upwards to oppose gravity ().L W

L = W

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 81 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L134
https://mavlinkhud.com/field-manual/mavlink-interface/attitude-target.html
https://mavlinkhud.com/field-manual/mavlink-interface/ahrs.html

In inverted flight, the aircraft must maintain a negative angle of attack () to generate lift "upwards" relative

to the Earth, even though the wing is upside down.

ArduPilot's navigation controller (L1) calculates the required bank angle to maintain the ground track while

accounting for the reduced lift efficiency of most non-symmetrical airfoils when flying inverted.

Practical Use Cases

1. Aerobatic Display:

Scenario: An autonomous drone show involving complex maneuvers.
Action: WAYPOINT (A) -> DO_INVERTED_FLIGHT (1) -> WAYPOINT (B) . The plane rolls 180

degrees and flies the segment between A and B upside-down.

2. Sensor Calibration:

Scenario: Calibrating an IMU or magnetometer by exposing it to symmetrical forces.

Action: Flying a specific leg upright, then repeating it inverted to cancel out bias.

Key Parameters

ROLL_LIMIT_DEG : Still applies while inverted.

Key Codebase Locations

ArduPlane/commands_logic.cpp:134: Mission command intake.

ArduPlane/attitude.cpp: High-level attitude control logic for inversion.

α

L ​ =inverted ​ρv SC ​

2
1 2

L,inverted

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 82 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html
https://mavlinkhud.com/parameters/ROLL.html#ROLL_LIMIT_DEG
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L134
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/attitude.cpp

DO_GRIPPER (ID 211)

Summary

The DO_GRIPPER command manages the state of a mechanical cargo gripper (claw, magnetic latch, or

drop-hook). This is a dedicated actuator command that is safer and more descriptive than a raw

DO_SET_SERVO because it integrates with the autopilot's landing and failsafe logic.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Instance (Param 1): The gripper ID (ArduPilot typically supports 1 primary gripper).

Action (Param 2):

0: Release (Open).

1: Grab (Close).

Packing: Stored in the internal gripper content struct.

Execution (Engineer's View)

Gripper Logic

Execution is handled by the AP_Gripper library (AP_Gripper.cpp).

1. Safety Interlocks: ArduPilot can be configured to prevent a "Release" action if the vehicle is not

within a safe altitude range or if a "Touchdown" has not been detected.

2. Actuator Type: AP_Gripper supports multiple hardware backends:
Servo: Moves a servo to a specific PWM (Open/Closed).

EPM (Electro-Permanent Magnet): Sends a pulse to flip the magnetic polarity (no power

required to hold).

3. Completion: The mission script advances immediately after the command is sent to the actuator; it

does not wait for a "sensor confirmed closed" signal unless combined with a CONDITION_DELAY .

Data Fields (MAVLink)

param1 (ID): Gripper instance number.

param2 (Action): 0: Release, 1: Grab.

param3 to param7 : Unused.

Theory: Energy States of Actuators

Standard Servos: Require continuous power to maintain a "Grab" state against a heavy load. This

causes heat and battery drain.
EPMs: Use a high-current pulse to re-align the magnetic domains of an Alnico core. Once

"Grabbed," the payload is held by a permanent magnetic field with zero power consumption. This is

the preferred gripper type for long-endurance ArduPilot missions.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 83 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/do-commands.html#DO_SET_SERVO
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Gripper/AP_Gripper.cpp
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/mission-planning/condition-commands.html#CONDITION_DELAY
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html

Practical Use Cases

1. Automated Package Delivery:

Scenario: A drone delivering a box to a backyard.

Action: NAV_WAYPOINT -> NAV_PAYLOAD_PLACE -> DO_GRIPPER (Release) .

2. Sample Collection:
Scenario: A rover picking up a rock.

Action: DO_GRIPPER (Grab) once the rover is over the target.

Key Parameters

GRIP_ENABLE : Global switch.

GRIP_TYPE : Selection between Servo and EPM.

GRIP_CAN_ON_PWM : The PWM value used to Close the gripper.

Key Codebase Locations

libraries/AP_Gripper/AP_Gripper.cpp: Core hardware interface.

ArduCopter/mode_auto.cpp: Mission integration.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 84 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/navigation.html#NAV_WAYPOINT
https://mavlinkhud.com/mission-planning/navigation.html#NAV_PAYLOAD_PLACE
https://mavlinkhud.com/parameters/GRIP.html#GRIP_ENABLE
https://mavlinkhud.com/parameters/GRIP.html#GRIP_TYPE
https://mavlinkhud.com/parameters/GRIP.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Gripper/AP_Gripper.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp

DO_AUTOTUNE_ENABLE (ID 212)

Summary

The DO_AUTOTUNE_ENABLE command triggers ArduPilot's automated PID tuning process during a mission.

This allows the vehicle to optimize its control gains in real-time while flying a specific leg of a mission,

which is useful for airframes whose dynamics change significantly with different payloads.

Status

Supported (ArduPlane Only)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command from the GCS.

Mission Storage (AP_Mission)

Enable (Param 1):

0: Disable Autotune.

1: Enable Autotune.

Packing: Stored in the internal p1 field.

Execution (Engineer's View)

Tuning Logic

The command utilizes the AP_AutoTune library (GCS_Mavlink.cpp:1207).

1. Safety Verification: The aircraft must be in a stable flight state (typically FBWA or Cruise) for

Autotune to be effective.

2. Perturbation: When enabled, the autopilot injects small, controlled step-inputs into the Roll and

Pitch axes.
3. Analysis: It monitors the vehicle's response (Rate and Acceleration) to calculate the ideal P, I, and D

gains.

4. Completion: The mission advances immediately. The Autotune process runs in the background. It is

common to follow this command with a long, straight WAYPOINT to give the tuner enough time to

converge.

Data Fields (MAVLink)

param1 (State): 0: Disable, 1: Enable.

param2 to param7 : Unused.

Theory: System Identification

AutoTune is a form of Online System Identification.

Excitation: The step-inputs "excite" the airframe's natural frequencies.

Damping Ratio: The algorithm looks for the "Overshoot" and "Settling Time" to ensure the resulting

PID gains provide a damping ratio () near 0.707 (Critically Damped).ζ

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 85 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/advanced-tuning/autotune-logic.html
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L1207

Risk: If Autotune is enabled on a poorly balanced or structurally weak airframe, the perturbations

can trigger oscillations. ArduPilot's tuner includes "divergence protection" to automatically abort if

the aircraft's attitude becomes unstable.

Practical Use Cases

1. Post-Payload Calibration:

Scenario: A plane drops a heavy 2kg sensor mid-flight.

Action: The mission triggers DO_AUTOTUNE_ENABLE (1) on the return leg to re-calibrate the

PIDs for the now much lighter (and potentially differently balanced) airframe.

2. Maiden Flight Script:
Scenario: Automating the first flight of a new aircraft.

Action: Mission includes a 5km straight leg with Autotune enabled to ensure a perfect tune

before the first landing.

Key Parameters

AUTOTUNE_LEVEL : Defines how "aggressive" the resulting tune should be.

AUTOTUNE_AXES : Selection of which axes to tune (Roll, Pitch, Yaw).

Key Codebase Locations

ArduPlane/GCS_Mavlink.cpp:1207: Autotune trigger logic.
libraries/AP_AutoTune/AP_AutoTune.cpp: The core gain-calculation engine.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 86 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/attitude.html
https://mavlinkhud.com/parameters/AUTOTUNE.html
https://mavlinkhud.com/parameters/AUTOTUNE.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/GCS_Mavlink.cpp#L1207
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_AutoTune/AP_AutoTune.cpp

DO_SET_RESUME_REPEAT_DIST (ID 215)

Summary

The DO_SET_RESUME_REPEAT_DIST command defines a "Rewind Distance" for mission resumption. If a

mission is interrupted (e.g., due to a mode change or a battery failsafe), and then resumed, the autopilot will

not simply fly to the next waypoint. Instead, it will backtrack along the mission path by the specified

distance before continuing forward.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Distance (Param 1): The backtrack distance in meters.

Packing: Stored in the internal _repeat_dist variable in the AP_Mission library.

Execution (Engineer's View)

Resumption Logic

ArduPilot handles this command within the AP_Mission::resume() function (AP_Mission.cpp).

1. Interrupt Discovery: The autopilot tracks the last successful waypoint passed (LAST_WP_PASSED).
2. Rewind Calculation: If _repeat_dist > 0 , the autopilot calls calc_rewind_pos() .

It looks at the segment between the last WP and the current WP.

It calculates a 3D coordinate that is Param1 meters backwards along that segment.

3. Path Re-entry: The vehicle first flies to this calculated rewind point and then resumes the original

mission track.

Data Fields (MAVLink)

param1 (Distance): Rewind distance in meters.

param2 to param7 : Unused.

Theory: The Overlap Requirement

In mapping and sensor missions, an interrupt usually results in a "data gap."

The Hazard: Most autopilots resume at the next waypoint, leaving a section of the mission un-

scanned.
The Solution: By setting a repeat distance (e.g., 50 meters), the pilot ensures that the drone "re-

scans" the last section of the previous leg, providing a overlap buffer that guarantees data continuity

for photogrammetry or LiDAR processing.

Practical Use Cases

1. Battery Swap Recovery:

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 87 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L158

Scenario: A mapping drone triggers a low-battery RTL in the middle of a 1km leg.

Action: The mission includes DO_SET_RESUME_REPEAT_DIST (100m) . After the pilot swaps the

battery and clicks "Resume," the drone flies back to the point 100m before it left the track,
ensuring the map has no holes.

2. Loss of Signal (LOS) Buffer:

Scenario: A drone is inspecting a long bridge and loses telemetry.

Action: Backtracking ensures that any missed photos are re-taken upon reconnection.

Key Parameters

MIS_RESTART : Affects whether the mission resets entirely or supports this resume logic.

Key Codebase Locations

libraries/AP_Mission/AP_Mission.cpp:158: resume logic and rewind calculation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 88 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/MIS.html#MIS_RESTART
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L158

DO_SPRAYER (ID 216)

Summary

The DO_SPRAYER command provides mission-level control for agricultural liquid sprayers. It is used to

enable or disable the pump and manage the flow rate based on the vehicle's ground speed to ensure even

chemical application.

Status

Supported (ArduCopter and ArduPlane with AC_Sprayer enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Enable (Param 1):

0: Disable Sprayer (Pump Off).

1: Enable Sprayer (Pump On).

Packing: Stored in the internal p1 field.

Execution (Engineer's View)

Sprayer Control Logic

Execution is handled by the AC_Sprayer library (AC_Sprayer.cpp).

1. Velocity Compensation: One of the most advanced features of AC_Sprayer is speed-scaling. The

pump's PWM output is modulated based on groundspeed ().

2. Spin-up/down: The controller manages the ramp-up time for the pump to prevent motor surges.

3. Automatic Cutoff: ArduPilot automatically disables the sprayer if the vehicle comes to a stop or

enters a failsafe state, preventing chemical pooling.

Data Fields (MAVLink)

param1 (State): 0: Disable, 1: Enable.
param2 to param7 : Unused.

Theory: Linear Application Rate

In precision agriculture, the goal is to apply a specific volume of liquid per unit of area ().

The Challenge: Drones decelerate at waypoints. If the pump stayed at a constant speed, the area

near the waypoint would receive a massive overdose of chemicals.
The Solution: The AC_Sprayer library integrates with the navigation controller to vary the pump

speed in real-time, maintaining a constant Linear Application Rate regardless of flight dynamics.

V ​g

PWM ​ =out BaseFlow ⋅ ​(
V ​nominal

V ​ground)

L/Ha

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 89 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_Sprayer/AC_Sprayer.cpp
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/navigation-mission/navigation-architecture.html

Practical Use Cases

1. Crop Mapping & Spraying:

Scenario: Spraying a rectangular field.

Action: WAYPOINT (A) -> DO_SPRAYER (1) -> WAYPOINT (B) . The drone flies the transect,

spraying only between A and B, and adjusting the flow as it accelerates out of A and
decelerates into B.

2. Mosquito Abatement:

Scenario: Targeting a specific swampy area.

Action: Mission uses ROI to circle the swamp while DO_SPRAYER manages the payload.

Key Parameters

SPRAY_ENABLE : Global switch.
SPRAY_PUMP_RATE : Nominal pump speed (\%).

SPRAY_SPEED_MIN : Groundspeed below which the pump is shut off.

Key Codebase Locations

libraries/AC_Sprayer/AC_Sprayer.cpp: Flow-scaling and pump control.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 90 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-circle.html
https://mavlinkhud.com/parameters/SPRAY.html#SPRAY_ENABLE
https://mavlinkhud.com/parameters/SPRAY.html#SPRAY_PUMP_RATE
https://mavlinkhud.com/parameters/SPRAY.html#SPRAY_SPEED_MIN
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AC_Sprayer/AC_Sprayer.cpp

DO_SEND_SCRIPT_MESSAGE (ID 217)

Summary

The DO_SEND_SCRIPT_MESSAGE command provides a bridge between the static Mission Engine and

ArduPilot's dynamic Lua Scripting environment. It allows a mission to pass numeric data to a running script,

which can then perform complex logic, such as changing flight parameters, interacting with custom

hardware, or modifying the mission on-the-fly.

Status

Supported (All Vehicles with AP_Scripting enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload.

Mission Storage (AP_Mission)

Target (Param 1): An ID used by the Lua script to identify the specific message.

Values (Param 2-4): Three numeric values (p1, p2, p3) passed to the script.

Packing: Stored in the scripting content struct.

Execution (Engineer's View)

Scripting Bridge

The command utilizes the AP_Scripting library (AP_Scripting.cpp).

1. Event Generation: When the mission reaches this item, the autopilot generates a

MISSION_ITEM_REACHED event internally.

2. Script Polling: A Lua script running on the flight controller uses the

mission:get_last_script_message() binding to retrieve the data.

3. Action: The script parses the Param 1 ID and executes the corresponding custom code.
4. Completion: The mission advances immediately. The "wait" for the script to finish must be handled

manually via a CONDITION_DELAY or a script-controlled mission override.

Data Fields (MAVLink)

param1 (ID): Message identifier.

param2 (p1): First numeric parameter.

param3 (p2): Second numeric parameter.
param4 (p3): Third numeric parameter.

param5 to param7 : Unused.

Theory: Extending the State Machine

Missions are typically limited to the commands defined in the MAVLink spec. DO_SEND_SCRIPT_MESSAGE

transforms the Mission Engine into a Programmable Logic Controller (PLC).

Custom Payloads: A drone carrying a non-standard sensor (e.g., a spectral scanner) can use this
command to tell a Lua script to start a specific calibration routine.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 91 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Scripting/AP_Scripting.cpp
https://mavlinkhud.com/field-manual/mavlink-interface/mission-item-reached.html
https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/mission-planning/condition-commands.html#CONDITION_DELAY
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-parameter-protocol.html

External Comms: A script can listen for this message and then send a custom HTTP/UDP packet to

an onboard companion computer or a cloud server.

Practical Use Cases

1. Dynamic Parameter Tuning:
Scenario: A plane needs different PID gains for a low-altitude "nap-of-the-earth" segment.

Action: DO_SEND_SCRIPT_MESSAGE (ID: 10, p1: 1) triggers a Lua script to call

param:set('ATC_RAT_RLL_P', 0.15) .

2. Robotic Integration:

Scenario: A drone landing on a moving rover needs to "Handshake" with the rover's local
network.

Action: Mission triggers the message, and the script handles the custom socket

communication.

Key Parameters

SCR_ENABLE : Enables the Lua scripting engine.

SCR_VM_I_COUNT : Instruction count (performance) for scripts.

Key Codebase Locations

libraries/AP_Scripting/AP_Scripting.cpp: Lua binding implementation.
ArduCopter/mode_auto.cpp: Command-to-script event routing.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 92 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/parameters/SCR.html#SCR_ENABLE
https://mavlinkhud.com/parameters/SCR.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Scripting/AP_Scripting.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp

DO_AUX_FUNCTION (ID 218)

Summary

The DO_AUX_FUNCTION command allows a mission to trigger any of ArduPilot's numerous "Auxiliary

Functions." These are the same functions typically assigned to physical switches on a radio transmitter

(e.g., "Save Waypoint," "Camera Trigger," "Arm/Disarm"). This command effectively allows the mission to

"flick a virtual switch."

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct
command.

Mission Storage (AP_Mission)

Function (Param 1): The ID of the auxiliary function (e.g., 7 = Save Waypoint).

Switch Position (Param 2):

0: Low (Off).

1: Middle.
2: High (On).

Packing: Stored in the auxfunction content struct.

Execution (Engineer's View)

Universal Switch Logic

Execution is handled by the RC_Channel library's auxiliary function dispatcher.

1. Virtual Input: ArduPilot treats the mission command as a virtual RC channel.
2. Mapping: The Param 1 value is matched against the list of internal functions (e.g.,

AUXSW_MOTOR_INTERLOCK , AUXSW_GRIPPER).

3. Action: The autopilot executes the code associated with that switch transition (e.g., if set to High ,

it runs the on_switch_high() method for that function).

Data Fields (MAVLink)

param1 (Function): Auxiliary function ID.
param2 (Position): 0: Low, 1: Mid, 2: High.

param3 to param7 : Unused.

Theory: Abstracted Logic

DO_AUX_FUNCTION represents the ultimate in Logic Abstraction.

The Power: ArduPilot has over 100 aux functions. Instead of creating 100 individual mission

commands, this one command provides access to all of them.
Unified Control: It ensures that whether an action is triggered by a human on a radio, a GCS button,

or an autonomous mission, it always calls the same verified block of C++ code.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 93 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-interface/radio.html
https://mavlinkhud.com/field-manual/mavlink-interface/camera-trigger.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html

Practical Use Cases

1. Waypoint Saving:

Scenario: A pilot is flying a survey and wants the mission to automatically record its own

progress.

Action: DO_AUX_FUNCTION (Function: 7, Position: 2) .
2. Emergency Stop (Motor Interlock):

Scenario: A high-risk mission segment (e.g., flying through a tunnel).

Action: A script can inject DO_AUX_FUNCTION (Function: 32, Position: 0) to instantly kill

the motors if a failure is detected.

Key Parameters

RCx_OPTION : Used to identify the ID of specific functions.

Key Codebase Locations

libraries/RC_Channel/RC_Channel.cpp: Auxiliary function dispatcher.

libraries/AP_Mission/AP_Mission.cpp: Command-to-RC-logic routing.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 94 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/tunnel.html
https://mavlinkhud.com/parameters/RC.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/RC_Channel/RC_Channel.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp

DO_GUIDED_LIMITS (ID 222)

Summary

The DO_GUIDED_LIMITS command sets safety constraints for Guided Mode. It defines the maximum time

and distance an external controller (e.g., an onboard companion computer or an GCS script) is allowed to

control the vehicle before the autopilot automatically intervenes and terminates the command.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct setup

command.

Mission Storage (AP_Mission)

Time Limit (Param 1): Max time in seconds for external control.

Alt Min (Param 2): Minimum altitude (meters).

Alt Max (Param 3): Maximum altitude (meters).

Horiz Max (Param 4): Maximum horizontal distance from the command start point (meters).

Packing: Stored in the guided_limits content struct.

Execution (Engineer's View)

Safety Buffer Logic

ArduPilot handles this in the Guided flight mode logic (mode_auto.cpp).

1. Handover: When the mission reaches NAV_GUIDED_ENABLE (or enters Guided mode via MAVLink),

these limits are activated.

2. Continuous Monitoring: Every loop, the autopilot checks:
Time: millis() - start_time > Param1 .

Altitude: current_alt < Param2 OR current_alt > Param3 .

Radius: 2D_Distance(start_pos, current_pos) > Param4 .

3. Failsafe: If any limit is breached, the autopilot instantly terminates Guided mode and typically

returns to the mission or enters a failsafe state (RTL).

Data Fields (MAVLink)

param1 (Time): Max execution time (s).

param2 (Alt Min): Min altitude (m).

param3 (Alt Max): Max altitude (m).

param4 (Radius): Max horizontal distance (m).

Theory: The Sandbox Principal

DO_GUIDED_LIMITS implements a Sandbox for external intelligence.

The Problem: Companion computer scripts (running ROS or Python) can crash or "go rogue" due to

bugs.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 95 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L785
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

The Solution: The flight controller (which is the ultimate arbiter of safety) creates a "Virtual Box" and

a "Watchdog Timer." The companion computer is free to experiment inside the box, but the flight

controller will "reel it back in" the moment it tries to exit the safe boundaries.

Practical Use Cases

1. AI Landing Research:

Scenario: Testing a new vision-based landing algorithm on a Raspberry Pi.

Action: DO_GUIDED_LIMITS (Time: 30s, Alt Min: 2m) . If the AI fails to land within 30

seconds or drops below 2 meters unexpectedly, the flight controller takes over.

2. GCS "Follow-Me":
Scenario: A tablet app is commanding the drone to follow a cyclist.

Action: Use horizontal limits to ensure the drone never wanders too far from the cyclist if the

app loses the tracking lock.

Key Parameters

GUID_OPTIONS : Can affect how Guided mode behaves when limits are hit.

Key Codebase Locations

ArduCopter/mode_auto.cpp:785: Mission command intake.

ArduCopter/mode_guided.cpp: Limit enforcement logic.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 96 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/build-guide/flight-controllers.html
https://mavlinkhud.com/field-manual/flight-modes/copter-land.html
https://mavlinkhud.com/parameters/GUID.html#GUID_OPTIONS
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L785
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_guided.cpp

DO_ENGINE_CONTROL (ID 223)

Summary

The DO_ENGINE_CONTROL command provides a mission-level interface for Internal Combustion Engines

(ICE). It is used to start or stop the engine, manage "Cold Start" procedures, and control height-based

delays for engine engagement. This is critical for high-endurance large-scale drones and hybrid power

systems.

Status

Supported (ArduPlane and ArduCopter with ICE enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct
command.

Mission Storage (AP_Mission)

Start/Stop (Param 1): 1: Start Engine, 0: Stop Engine.

Cold Start (Param 2): 1: Cold Start (enables extended cranking/glow plug time), 0: Warm Start.

Height Delay (Param 3): Height in meters to wait before attempting a start (unit converted to cm in

storage).
Options (Param 4): Bitmask for start behavior (e.g., Allow start while disarmed).

Mechanism: Stored in the internal do_engine_control content struct.

Execution (Engineer's View)

ICE State Machine

The command is handled by the AP_ICEngine library.

1. Cranking Logic: When Start (1) is commanded, the autopilot manages the Starter Motor (via a
Relay or ESC) and Ignition system.

2. Telemetry Check: ArduPilot monitors the engine RPM via an onboard sensor. The "Start" is only

considered successful when the RPM exceeds the ICE_START_RPM .

3. Kill Switch: The Stop (0) command instantly terminates the ignition/fuel relay, ensuring a rapid

shutdown for safety or post-mission power-down.
4. VTOL Integration: In hybrid QuadPlanes, this command can be used to start the generator engine

once the aircraft is clear of the ground and transitioning to fixed-wing flight.

Data Fields (MAVLink)

param1 (Start): 1: Start, 0: Stop.

param2 (Cold): 1: Cold Start, 0: Warm.

param3 (Height): Delay start until this height (meters).
param4 (Options): Bit 0: Allow start while disarmed.

param5 to param7 : Unused.

Theory: Combustion Safety

Starting a combustion engine autonomously is a significant safety risk.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 97 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/build-guide/power-systems.html
https://mavlinkhud.com/field-manual/build-guide/power-systems.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/parameters/ICE.html#ICE_START_RPM

Vibration: Engines produce high-frequency vibration that can saturate the EKF. ArduPilot's engine

controller includes logic to check the "Health" of the IMUs during the cranking phase.

Height Delays: The Height Delay (Param 3) is a critical safety feature. It prevents a hot, powerful
engine from starting on the ground where it could injure people. The engine is only engaged once

the vehicle is safely "In the Air."

Practical Use Cases

1. Hybrid Range Extension:

Scenario: A VTOL drone launches using battery power for noise abatement.

Action: Mission includes DO_ENGINE_CONTROL (Start, Height Delay: 20m) . The engine
starts only after the drone is high enough to minimize ground noise.

2. Autonomous Landing Shutdown:

Scenario: A gas-powered drone completes its mission.

Action: NAV_LAND -> [CONDITION_DELAY](/mission-planning/condition-

commands.html#CONDITION_DELAY) (5s) -> DO_ENGINE_CONTROL (Stop) . Ensures the engine
is cool and stopped before humans approach the airframe.

Key Parameters

ICE_START_RPM : RPM threshold to consider the engine "Running."

ICE_PIN : Relay pin used for the Starter.

ICE_PWM_IGN : PWM value to enable ignition.

Key Codebase Locations

libraries/AP_ICEngine/AP_ICEngine.cpp: The core ICE driver and state machine.

ArduPlane/commands_logic.cpp:183: Plane mission integration.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 98 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/mission-planning/navigation.html#NAV_LAND
https://mavlinkhud.com/parameters/ICE.html#ICE_START_RPM
https://mavlinkhud.com/parameters/ICE.html#ICE_PIN
https://mavlinkhud.com/parameters/ICE.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_ICEngine/AP_ICEngine.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduPlane/commands_logic.cpp#L183

DO_GIMBAL_MANAGER_PITCHYAW (ID 1000)

Summary

The DO_GIMBAL_MANAGER_PITCHYAW command provides advanced, high-level control for modern MAVLink

gimbals. It allows for simultaneous control of both angles and rates, and includes flags for specifying the

frame of reference (Body vs. Earth). This is the "Modern" version of the legacy DO_MOUNT_CONTROL .

Status

Supported (All Vehicles with Gimbal Manager backends)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Pitch (Param 1): Angle in degrees.

Yaw (Param 2): Angle in degrees.

Pitch Rate (Param 3): Deg/s.

Yaw Rate (Param 4): Deg/s.

Flags (Param 5): Bitmask for coordinate frames and modes.
Gimbal ID (Param 7): Target instance.

Packing: Stored in the gimbal_manager_pitchyaw content struct.

Execution (Engineer's View)

Gimbal Manager Protocol

Unlike simple servo gimbals, modern gimbals (like the DJI H20T or specialized Gremsy units) handle their

own stabilization. ArduPilot acts as a "Manager."

1. Setpoints: ArduPilot extracts the 5D setpoint (Angle P, Angle Y, Rate P, Rate Y, Frame).

2. Targeting: The command is forwarded to the specific Gimbal ID via the MAVLink Gimbal Protocol v2.

3. Frame Switching:

Body Frame: The camera follows the drone's nose.

Earth Frame: The camera stays locked to a compass heading.
4. Rate Overlays: The inclusion of "Rate" parameters allows for smooth "Cinematic Pans" where the

gimbal moves at a constant speed to a target angle, rather than jumping instantly.

Data Fields (MAVLink)

param1 (Pitch): deg.

param2 (Yaw): deg.

param3 (PRate): .

param4 (YRate): .

param5 (Flags): See GIMBAL_MANAGER_FLAGS.

Theory: Rate vs. Position Control

In control systems, Position Control () is prone to "jerk" ().

deg/s
deg/s

P J = ​

dt
da

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 99 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/mission-planning/do-commands.html#DO_MOUNT_CONTROL
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

The Improvement: By specifying a Rate Limit (), the gimbal manager implements a Velocity-

Limited Position Controller.

Mathematics: The target angle follows a ramp:

until . This results in the smooth, professional camera movements seen in high-end

cinema drones.

Practical Use Cases

1. Survey Pivot:

Scenario: A triple-lens camera needs to pan from visual to thermal while maintaining a steady

rate to avoid motion blur.
Action: DO_GIMBAL_MANAGER_PITCHYAW (Yaw: 90, YawRate: 5) . The camera slowly turns to

the right over 18 seconds.

2. Tracking a Moving Target:

Scenario: The GCS is streaming a target velocity.

Action: The command uses the Rate parameters to "Lead" the target.

Key Parameters

MNT1_TYPE : Must be set to MAVLinkV2 .

Key Codebase Locations

libraries/GCS_MAVLink/GCS_Common.cpp:5519: Command forwarding logic.

libraries/AP_Mount/AP_Mount.cpp: High-level mount coordination.

ω

θ(t)

θ(t) = θ ​ +0 ω ⋅ t

θ(t) = θ ​target

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 100 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/MNT.html#MNT1_TYPE
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/GCS_MAVLink/GCS_Common.cpp#L5519
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mount/AP_Mount.cpp

DO_WINCH (ID 42600)

Summary

The DO_WINCH command provides advanced control for robotic winches slung beneath a vehicle. It

supports releasing a specific length of cable, controlling the cable's rate of descent, or "relaxing" the motor.

This is the primary command for air-to-ground delivery systems where the drone must remain high while

the payload descends.

Status

Supported (ArduCopter)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct
command.

Mission Storage (AP_Mission)

Action (Param 2):

0: Relax (Motor powered off).

1: Position (Release length).

2: Rate (Descent speed).
Length (Param 3): Distance in meters (Negative to reel in).

Rate (Param 4): Speed in m/s.

Packing: Stored in the winch content struct.

Execution (Engineer's View)

Winch Control State Machine

The command is handled by the AP_Winch library (AP_Winch.cpp).

1. Safety Verification: ArduPilot checks the WINCH_TYPE . It supports PWM winches (servos),

DroneCAN winches, and Daedalus-protocol winches.

2. Position Control: If Action: 1 is selected, the autopilot uses a PID loop to move the cable to the

absolute length requested. This typically requires an encoder on the winch motor.

3. Rate Control: If Action: 2 is selected, the autopilot maintains a steady cable velocity. This is safer
for heavy payloads to prevent "yanking" the drone out of the air if the cable snags.

4. Completion: The mission advances immediately. The winch continues to work in the background. It

is highly recommended to follow a winch command with a CONDITION_DELAY if the next mission leg

requires the payload to be fully deployed or retracted.

Data Fields (MAVLink)

param1 (Instance): Winch number (typically 0).
param2 (Action): 0:Relax, 1:Length, 2:Rate.

param3 (Length): m.

param4 (Rate): m/s.

Theory: Tension and Pendulums

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 101 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Winch/AP_Winch.cpp
https://mavlinkhud.com/mission-planning/condition-commands.html#CONDITION_DELAY

Slung loads introduce Pendulum Dynamics into the drone's flight model.

Oscillation: A long cable () has a natural frequency .

Damping: ArduPilot's position controller is aware of the cable length if DO_WINCH is used, allowing

the EKF to potentially compensate for the shifting center of gravity.

Safety: The Relax (0) action is critical for emergencies. If the payload snags on a tree, relaxing

the winch allows the drone to fly away rather than being pulled into the ground.

Practical Use Cases

1. Cable-Drop Delivery:

Scenario: Delivering a parcel to a balcony.

Action: Drone hovers 10m above the balcony. DO_WINCH (Action: 1, Length: 10m) lowers

the parcel. [DO_GRIPPER](/mission-planning/do-commands.html#DO_GRIPPER) (Release)

drops it. DO_WINCH (Action: 1, Length: -10m) reels the hook back in.
2. Water Sampling:

Scenario: Lowering a sensor into a lake.

Action: DO_WINCH (Action: 2, Rate: 0.5m/s) ensures a smooth entry for the sensor.

Key Parameters

WINCH_TYPE : Hardware selection.

WINCH_MAX_LENGTH : Safety limit to prevent the motor from unspooling the entire drum.

Key Codebase Locations

libraries/AP_Winch/AP_Winch.cpp: Main driver logic.
ArduCopter/mode_auto.cpp:1997: Mission command intake.

L f = ​ ​2π
1

​

L

g

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 102 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/WINCH.html#WINCH_TYPE
https://mavlinkhud.com/parameters/WINCH.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Winch/AP_Winch.cpp
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/ArduCopter/mode_auto.cpp#L1997

CAMERA

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 103 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

SET_CAMERA_ZOOM (ID 531)

Summary

The SET_CAMERA_ZOOM command controls the focal length of an onboard camera during a mission. It allows

for both incremental (rate-based) and absolute (percentage-based) zoom adjustments, enabling detailed

inspections or wide-area reconnaissance from the same mission script.

Status

Supported (All Vehicles with AP_Camera enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command from the GCS.

Mission Storage (AP_Mission)

Zoom Type (Param 1):

0: Step (Not supported in storage).

1: Continuous (Rate-based).

2: Range (Percentage-based 0-100).

Zoom Value (Param 2): The value corresponding to the requested type.
Packing: Stored in the set_camera_zoom content struct.

Execution (Engineer's View)

Camera Driver Interaction

The command is routed through the AP_Camera library (AP_Camera.cpp).

1. Rate-Based Zoom: If Continuous (1) is selected, the autopilot commands the lens motor to move

at a specific speed. This is typically used with gimbal-integrated cameras where the operator wants
to zoom in "until clear."

2. Percentage Zoom: If Range (2) is selected, the autopilot maps the 0.0-100.0 input to the camera's

internal zoom range ().

3. Backend Support: This command works with MAVLink-enabled cameras (like SToRM32 or Tarot),

DroneCAN cameras, and specialized drivers (like the Gremsy or Sony cameras). If the camera

backend does not support zoom, the command is ignored.

Data Fields (MAVLink)

param1 (Type): 0:Step, 1:Continuous, 2:Range.

param2 (Value): Rate (speed) or Percentage.
param3 to param7 : Unused.

Theory: Magnification vs. Resolution

Zooming in does not increase the sensor's physical resolution; it changes the Field of View (FOV).

GSD Impact: Doubling the zoom () effectively halves the Ground Sample Distance (GSD),

assuming the altitude remains constant.

Z ​ →min Z ​max

2×

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 104 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L297
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html

Vibration Sensitivity: As FOV decreases (Zoom increases), the image becomes exponentially more

sensitive to high-frequency vibration (). This often requires the gimbal's PID gains to be

adjusted dynamically (handled automatically by advanced backends).

Practical Use Cases

1. In-Mission Target Detail:

Scenario: A drone is surveying a fence. It detects a breach at a waypoint.

Action: SET_CAMERA_ZOOM (Type: 2, Value: 80\%) . The drone zooms in to capture high-
detail evidence before continuing the survey.

2. Dynamic Reconnaissance:

Scenario: A search-and-rescue plane is looking for a boat.

Action: The plane orbits at zoom to cover the area. Once a suspect object is found, it uses

a script to trigger SET_CAMERA_ZOOM to for confirmation.

Key Parameters

CAM_TYPE : Selection of camera hardware.
MNT1_TYPE : Often required as gimbals handle the physical lens motors.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:297: Mission command intake.

libraries/AP_Camera/AP_Camera_MAVLinkCamV2.cpp: Translation to MAVLink camera protocol.

Z ​ ∝sens ​FOV
1

1×
10×

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 105 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/parameters/CAM.html#CAM_TYPE
https://mavlinkhud.com/parameters/MNT.html#MNT1_TYPE
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L297
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_MAVLinkCamV2.cpp

SET_CAMERA_FOCUS (ID 532)

Summary

The SET_CAMERA_FOCUS command manages the focus state of an onboard camera. It supports triggering

Auto-Focus (AF) routines or setting manual focus levels, ensuring sharp imagery for automated inspections

where the distance to the subject varies.

Status

Supported (All Vehicles with AP_Camera enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command from the GCS.

Mission Storage (AP_Mission)

Focus Type (Param 1):

0: Auto.

1: Continuous (Manual rate).

2: Range (Manual percentage 0-100).

Focus Value (Param 2): The value corresponding to the manual types.
Packing: Stored in the set_camera_focus content struct.

Execution (Engineer's View)

Focus Management

The command is processed by the AP_Camera library (AP_Camera.cpp).

1. Auto-Focus Trigger: If Auto (0) is selected, ArduPilot commands the camera backend to perform

a "One-shot AF" or "Continuous AF" depending on the camera's internal capabilities.
2. Manual Overrides: If Range (2) is selected, ArduPilot maps the input to the lens's focal range (

).

3. Lens Compatibility: This command requires a camera with an electronically controlled focus motor
(e.g., Sony block cameras, Gremsy-integrated sensors). Fixed-focus mapping cameras (like those

used for photogrammetry) will ignore this command.

Data Fields (MAVLink)

param1 (Type): 0:Auto, 1:Continuous, 2:Range, 3:Meters (Rarely supported).

param2 (Value): Rate or Percentage.

param3 to param7 : Unused.

Theory: The Circle of Confusion

Focusing is the process of minimizing the Circle of Confusion () on the image sensor.

Depth of Field (DOF): At high zoom levels, the DOF becomes extremely shallow.

Vibration: Out-of-focus images cannot be corrected in post-processing. SET_CAMERA_FOCUS is
used to "Lock" focus before a high-vibration segment to prevent the camera's internal AF from

F ​ →min F ​max

c

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 106 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/flight-modes/copter-auto.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L307
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html

"hunting" due to motion blur.

Practical Use Cases

1. Macro Inspection:

Scenario: A drone is inspecting a weld on a bridge at a distance of 1.5 meters.
Action: SET_CAMERA_FOCUS (Auto) followed by IMAGE_START_CAPTURE .

2. Infinity Lock:

Scenario: Mapping from 100m altitude.

Action: Mission starts with SET_CAMERA_FOCUS (Range: 100\%) to lock the lens at infinity,

preventing hunting during flight.

Key Parameters

CAM_TYPE : Selection of camera hardware.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:307: Focus control implementation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 107 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/mission-planning/camera.html#IMAGE_START_CAPTURE
https://mavlinkhud.com/field-manual/mavlink-interface/altitude.html
https://mavlinkhud.com/parameters/CAM.html#CAM_TYPE
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L307

SET_CAMERA_SOURCE (ID 534)

Summary

The SET_CAMERA_SOURCE command allows the mission to dynamically switch between different sensors

(lenses) on a multi-sensor camera system. This is common on modern dual-sensor payloads that feature

both a visual (RGB) and a thermal (EO/IR) sensor.

Status

Supported (All Vehicles with AP_Camera enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Instance (Param 1): The camera ID (1-6). 0 for "All."

Primary Source (Param 2): Selection for the primary stream (e.g., RGB).

Secondary Source (Param 3): Selection for the secondary stream (e.g., IR).

Packing: Stored in the set_camera_source content struct.

Execution (Engineer's View)

Multicam Logic

The command is handled by AP_Camera::set_camera_source (AP_Camera.cpp).

1. Index Translation: ArduPilot maps "Camera 1" to the first available hardware driver.

2. Source Selection: The autopilot sends a command to the camera backend (MAVLink or specialized

driver) to reconfigure the video stream or the image capture target.

3. Use Cases:
Switching from Wide-Angle to Telephoto on a triple-lens system.

Switching from Visual to Night-Vision (Thermal) for a search leg.

Data Fields (MAVLink)

param1 (Instance): Camera instance number.

param2 (Primary): 0:No change, 1:RGB, 2:IR, 3:NDVI.

param3 (Secondary): Same as above.
param4 to param7 : Unused.

Theory: Sensor Fusion

In modern autonomous flight, the "Source" is not just a video feed; it defines the vehicle's Primary

Intelligence Input.

RGB: Used for photogrammetry and human monitoring.

IR: Used for finding heat signatures (SAR) or hot-spots (Industrial Inspection).
The Switch: SET_CAMERA_SOURCE allows a single drone to perform two missions in one flight by

reconfiguring its brain for the task at hand.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 108 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L329
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

Practical Use Cases

1. Thermal Inspection:

Scenario: Inspecting high-voltage lines.

Action: Mission flies to the pole. SET_CAMERA_SOURCE (IR) is used to check for heat, then

SET_CAMERA_SOURCE (RGB) is used to take high-res visual confirmation of the hardware.
2. Multi-Spectrally Survey:

Scenario: Mapping a field for crop health.

Action: Mission alternates sources to capture both RGB and NDVI (Normalized Difference

Vegetation Index) data.

Key Parameters

CAM_TYPE : Selection of camera hardware.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:329: Logic for multi-sensor switching.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 109 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/CAM.html#CAM_TYPE
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L329

IMAGE_START_CAPTURE (2000) / IMAGE_STOP_CAPTURE (ID 2001)

Summary

The IMAGE_START_CAPTURE and IMAGE_STOP_CAPTURE commands provide precise control over high-

resolution still image acquisition. They support single-shot, interval-based (time), and burst-based capture

modes, making them the standard choice for professional survey and reconnaissance missions.

Status

Supported (All Vehicles with AP_Camera enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Instance (Param 1): The target camera (1-6). 0 for "All."

Interval (Param 2): Time between shots in seconds.

Total Images (Param 3): Number of images to take. 0 for "Continuous/Unlimited."

Start Seq (Param 4): Sequence number for the first image (often ignored by ArduPilot storage).

Packing: Stored in the image_start_capture content struct.

Execution (Engineer's View)

Capture Logic

Execution is handled by AP_Camera (AP_Camera.cpp).

1. Single vs. Multiple:

If Param 3 = 1 , ArduPilot triggers a single take_picture() event.

If Param 3 > 1 or 0 , it initializes a timer-based loop take_multiple_pictures() .
2. Hardware Handshake: For MAVLink-enabled cameras (e.g., Sony Airpeak or specialized gimbals),

the autopilot sends the IMAGE_START_CAPTURE packet down the bus to the camera. For simple

cameras, it uses the Relay/PWM shutter trigger.

3. Termination: IMAGE_STOP_CAPTURE (2001) instantly kills any running timers and sends a "Stop"

packet to MAVLink backends.

Data Fields (MAVLink)

param1 (ID): Camera ID.

param2 (Interval): s.

param3 (Total): Count.

param4 (Seq): Start number.

Theory: The Data Pipeline

Still images capture significantly more detail than video frames because they use the sensor's full
resolution without compression artifacts.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 110 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L350
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html

Storage Bandwidth: Capturing 42MP images every 1.5 seconds requires a high-speed UHS-II SD

card. ArduPilot's mission engine handles the triggering, but the camera backend manages the actual

file I/O.
Feedback: ArduPilot listens for CAMERA_IMAGE_CAPTURED messages from smart backends to log the

precise GPS coordinate where each image was actually written to disk.

Practical Use Cases

1. High-Res Photogrammetry:

Scenario: Mapping a construction site.

Action: IMAGE_START_CAPTURE (Interval: 2s, Total: 0) . The drone flies the grid,
snapping every 2 seconds until the mission ends.

2. Point of Interest Burst:

Scenario: Inspecting a cracked turbine blade.

Action: Mission hovers at the blade. IMAGE_START_CAPTURE (Interval: 0.5s, Total: 10) .

The drone captures 10 high-speed shots to ensure a clear image is obtained despite
vibration.

Key Parameters

CAM_TRIGG_TYPE : Defines the physical trigger method.

CAM_FEEDBACK_PIN : Used to log image coordinates from a camera's "Hot Shoe" signal.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:350: Still image capture handler.

libraries/AP_Camera/AP_Camera_MAVLink.cpp: MAVLink camera bridge.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 111 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-interface/camera-image-captured.html
https://mavlinkhud.com/field-manual/log-analysis/vibration-analysis.html
https://mavlinkhud.com/parameters/CAM.html#CAM_TRIGG_TYPE
https://mavlinkhud.com/parameters/CAM.html#CAM_FEEDBACK_PIN
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L350
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_MAVLink.cpp

VIDEO_START_CAPTURE (2500) / VIDEO_STOP_CAPTURE (ID 2501)

Summary

The VIDEO_START_CAPTURE and VIDEO_STOP_CAPTURE commands control the recording state of onboard

video sensors. They allow a mission to automatically record only the segments of flight that are relevant to

the objective, saving storage space and power.

Status

Supported (All Vehicles with AP_Camera enabled)

Directionality

RX (Receive): The vehicle receives this command as part of a mission upload or as a direct

command.

Mission Storage (AP_Mission)

Stream ID (Param 1): The target video stream or camera instance.

Packing: Stored in the video_start_capture content struct.

Execution (Engineer's View)

Recording Logic

Execution is handled by AP_Camera::record_video (AP_Camera.cpp).

1. Direct Control: If the camera is a simple GoPro-style camera triggered via a PWM signal, ArduPilot
moves the servo/pin to the "Record" position.

2. MAVLink Control: For high-end cameras (e.g., DJI, Sony), ArduPilot sends the standard MAVLink

command to the camera's component ID.

3. Conflict Management: If a "Start" is commanded while the camera is already recording, ArduPilot

typically ignores the second command to prevent file corruption.

Data Fields (MAVLink)

param1 (ID): Video stream/camera ID.

param2 (Freq): Record frequency (FPS). Typically ignored (set in camera menu).

param3 to param7 : Unused.

Theory: Bandwidth vs. Detail

Video recording is a continuous energy drain on both the battery and the onboard processor.

The Overload: Modern 4K/60fps video generates significant electromagnetic interference (EMI).
Autonomous Recording: By using mission commands to start recording after the takeoff and stop
before the landing, the pilot minimizes the noise exposure during the most critical flight phases

(where GPS/Compass health is most vital).

Practical Use Cases

1. Evidence Collection:

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 112 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L411
https://mavlinkhud.com/field-manual/custom-airframes/servo-output-mapping.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-routing.html
https://mavlinkhud.com/field-manual/power-systems/battery-physics.html
https://mavlinkhud.com/field-manual/sensor-architecture/magnetometer-management.html

Scenario: A security drone patrolling a site.

Action: WAYPOINT (Start of Patrol) -> VIDEO_START_CAPTURE . The drone records the

entire patrol leg and stops once it begins its return-to-launch.
2. Cinematic Reveal:

Scenario: A drone flying a specific path for a film shot.

Action: VIDEO_START_CAPTURE is triggered precisely at the start of the camera movement.

Key Parameters

CAM_TYPE : Selection of camera hardware.

Key Codebase Locations

libraries/AP_Camera/AP_Camera.cpp:411: Implementation of video recording logic.

libraries/AP_Camera/AP_Camera_Gopro.cpp: Specialized GoPro control.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 113 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-signing-security.html
https://mavlinkhud.com/parameters/CAM.html#CAM_TYPE
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera.cpp#L411
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Camera/AP_Camera_Gopro.cpp

OTHER

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 114 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

JUMP_TAG (600) / DO_JUMP_TAG (ID 601)

Summary

The JUMP_TAG and DO_JUMP_TAG commands provide an advanced, identifier-based flow control system

for missions. Unlike the standard DO_JUMP (which uses sequence numbers), the tag-based system uses a

"Named Marker" (a numeric tag). This allows the mission to be edited—inserting or deleting waypoints—

without breaking the jump logic, as the autopilot searches for the tag rather than a fixed index.

Status

Supported (All Vehicles)

Directionality

RX (Receive): The vehicle receives these commands as part of a mission upload.

Mission Storage (AP_Mission)

Tag (Param 1): A user-defined integer ID (1-255).

Repeat (Param 2): (601 only) Number of times to jump to that tag.

Search Logic: When DO_JUMP_TAG is reached, the autopilot scans the entire mission command list

from the beginning to find the first JUMP_TAG with a matching ID (AP_Mission.cpp:2279).

Execution (Engineer's View)

Robust Flow Control

1. Tag Discovery: The mission engine calls find_tag_index(tag) . This is a operation where

 is the number of mission items.

2. Persistence: Like standard jumps, ArduPilot tracks the num_times_run for each DO_JUMP_TAG

using the command's unique mission index.

3. Failure State: If a DO_JUMP_TAG points to a tag that does not exist in the mission list, ArduPilot logs

a warning and the mission completes immediately for safety.

Data Fields (MAVLink)

JUMP_TAG (600)

param1 (Tag ID): The identifier for this marker.

DO_JUMP_TAG (601)

param1 (Tag ID): The target marker to jump to.
param2 (Repeat): Number of times to jump.

Theory: Semantic vs. Positional Addressing

In computer science, DO_JUMP is equivalent to a GOTO statement with a line number. DO_JUMP_TAG is

equivalent to a GOTO with a Label.

Maintainability: Positional jumps are "Brittle." If you add a waypoint at the start of a mission, every

DO_JUMP that follows must be manually updated to point to the new shifted indices.

O(N)
N

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 115 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-flow-control.html
https://mavlinkhud.com/mission-planning/do-commands.html#DO_JUMP
https://mavlinkhud.com/field-manual/navigation-mission/mission-state-machine.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://mavlinkhud.com/field-manual/mavlink-internals/mavlink-mission-protocol.html
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2279

Flexibility: DO_JUMP_TAG is "Semantic." The jump points to the meaning of the location (e.g., "Start

of Search Area"), ensuring the mission logic remains valid regardless of minor path adjustments.

Practical Use Cases

1. Multi-Stage Search:
Scenario: A drone needs to orbit a site, then fly a grid, then repeat.

Action: Place JUMP_TAG (ID: 50) at the start of the orbit. Use DO_JUMP_TAG (Target: 50,

Repeat: 5) at the end of the grid.

2. Dynamic Scripting:

Scenario: A GCS script wants to loop a specific section of a mission that was just uploaded.
Action: The script searches for the Tag ID instead of parsing the whole mission list for

indices.

Key Parameters

MIS_RESTART : Resetting the mission will reset the tag counters.

Key Codebase Locations

libraries/AP_Mission/AP_Mission.cpp:2279: Tag discovery loop.

libraries/AP_Mission/AP_Mission.cpp:2176: Mission re-indexing and tag validation.

MISSION PLANNING REFERENCE
https://mavlinkhud.com
Page 116 of 116

Take Your Professional Drone Operations
to the next level with MAVLink HUD

GET IT ON GOOGLE PLAY

https://mavlinkhud.com/parameters/MIS.html#MIS_RESTART
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2279
https://github.com/ArduPilot/ardupilot/blob/a37665a24621058938f5573dd0acb970002417ab/libraries/AP_Mission/AP_Mission.cpp#L2176

